How to color a map with (-1) color?

(first part)

Amrita Vishwa Vidyapeetham
Amrita University, Coímbatore
7 March 2017
Xavier Viennot
CNRS, LaBRI, Bordeaux www.xavierviennot.org/xavier

The Vertex Coloring Algorithm Ashay Dharwadker

The Vertex Coloring Algorithm Ashay Dharwadker

graph $G=(V, E)$
O_{G} (λ graph G with (proper) coloring of the

graph $G=(V ; E)$
$\gamma_{G}(\lambda)$ number of (proper) coloring of the chromatic polynomial
$\gamma_{G}(\lambda)$ chromatic polynomial
chromatic number $V(G)$

$$
\begin{aligned}
& =\text { mallet number } \nu \\
& \rightarrow \text { such that } \gamma_{G}(\lambda) \neq 0 \\
& \rightarrow \text { zeros of } \gamma_{G}(\lambda)
\end{aligned}
$$

The 4 colors theorem is "almost" fake....
graph $G=(V ; E)$
$\gamma_{G}(\lambda)$ number of (proper) coring of the chromatic polynomial
 coloring with (-1) colors
$a(G)$ number of acyclic
orientations of G

$$
n(G)=|V|
$$

number of vertices

Tropoition (Stanley, 1973)

$$
a(G)=(-1)^{n(G)} \gamma_{G}(-1)
$$

algebraic graph theory

$$
G=(V, E) \quad \text { graph }\left\{\begin{array}{l}
V \quad \begin{array}{c}
\text { vertices } \\
E\left(\begin{array}{c}
\text { non-oviented } \\
\text { edges }
\end{array}\{u, v\}\right.
\end{array}
\end{array}\right.
$$

combinatorial of properties
algebraic objects

- polynomials
- vector spaces
- power series
N. Biggo "algebraic graph theory"

$$
\begin{array}{r}
\text { connection } \\
\text { with }
\end{array}\left\{\begin{array}{l}
\text { Statistical physics } \\
\text { Knots theory } \\
\text { Lie algebra } \\
\text { Heaps theory }
\end{array}\right.
$$

some polynomials or numbers associated to a graph
characteristic of a graph $G \quad A=\left(a_{i j}\right)_{i \aleph_{i}^{\prime} \leqslant \leqslant n}$
adjacency matrix

$$
a_{i j}=\left\{\begin{array}{lcc}
1 & e_{i} & j \\
0 & \text { no } & \text { edge }
\end{array}\right.
$$

$$
X(x)=\operatorname{det}(I x-A)
$$

spanning tree of a graph $G=(V, E)$

spanning tree of a graph $G=(V, E)$

number of spanning tree

Tulte polynomial

$$
\begin{aligned}
& T(x, y) \sum_{\substack{T \\
\text { spanning } \\
\text { trees }}} x^{i(T)} y^{e(T)} \\
& \rightarrow \text { Potts model } \\
& T(1,1)=\text { number of spanning } \\
& T(2,0)=\text { chromatic number }
\end{aligned}
$$

matching of a graph G

- number of perfect matchings constant term of the matching polynomial
\rightarrow Pfaffian, determinant (for planar graph).
\rightarrow statistical prechanies Icing model for magnetism

Ihara-Selberg zeta function
$\rightarrow \mathrm{Ch} 5 \mathrm{~b}$ of a graph
extension of Riemann zeta function

$$
\sum_{n \geqslant 1} m^{-s}
$$

Proposition (Stanley, 1973)

$$
a(G)=(-1)^{n(G)} \gamma_{G}(-1)
$$

heaps over a graph

proof using commutation (CarYier-Foata) monoid from Gessel (1985)?

Commutation monoids
a, b, c, d, \ldots
letters
formal variables

$$
\begin{array}{ll}
a d=d a & a b \neq b a \\
c d=d c & a c \neq c a \\
b c=c b & b d \neq d b
\end{array}
$$

a, b, c, d, \ldots
letters
formal variables

$$
\begin{array}{ll}
a d=d a & a b \neq b a \\
c d=d c & a c \neq c a \\
b c=c b & b d \neq d b
\end{array}
$$

- © commutation
noncommutation
abcad word monomial
$w=a b c a d$

$$
\begin{aligned}
& a d=d a \\
& c d=d c \\
& b c=c b
\end{aligned}
$$

abcad word monomial
$w=a b c a d$ acbad

$$
\begin{aligned}
& a d=d a \\
& c d=d c \\
& b c=c b
\end{aligned}
$$

abcad word $\begin{gathered}\text { monomial }\end{gathered}$

$$
w=a b c a d \longrightarrow a b c d a
$$ acbad

$$
\begin{aligned}
a d & =d a \\
c d & =d c \\
b c & =c b
\end{aligned}
$$

abcad word $\begin{gathered}\text { monomial }\end{gathered}$

$$
\begin{aligned}
a d & =d a \\
c d & =d c \\
b c & =c b
\end{aligned}
$$

abcad word $\begin{gathered}\text { monomial }\end{gathered}$
$w=a b c a d-a b c d a$ acbad $a b d c a$ acbda

$$
\begin{aligned}
& a d=d a \\
& c d=d c \\
& b c=c b
\end{aligned}
$$

abcad word $\begin{gathered}\text { monomial }\end{gathered}$

$$
\begin{aligned}
& \text { wabcad abcda } \\
& \text { acbad } a b d c a \\
& \text { acbda } \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& b c=c d=d a \\
& b c
\end{aligned}
$$

ex:

$$
\begin{aligned}
A= & \{a, b, c, d\} \\
& \left\{\begin{array}{l}
a d=d a \\
b c=c b \\
c d=d c
\end{array}\right.
\end{aligned}
$$

equivalence class

Cartier-Eoata monograply
in SLC Séminave otharingien $(2006)^{\text {de Cumbinatoire }}$
http://www.mat.univie.ac.at/~slc/
with an appendix
by C. Kralten thaler

Cartier-Foata commutation monoid
Lecture Note in Maths $n .85$ (1969)
"Problemes combinatoires de commutation et rearrangements"

monoid $M(u, v) \rightarrow u \bullet v$

$$
\left\{\begin{array}{l}
\text { - associativity }(u \circ v) \circ w=u \bullet(v \circ w) \\
\text { - neutral element } u \bullet e=\text { ecu }
\end{array}\right.
$$

examples- $\mathbb{N}+, 0$ addition

- $\mathbb{N} \times, 1$ product
alphabet A free monoid A^{*}

$$
\left.\begin{array}{rl}
u=a_{1} \ldots a_{0} \\
v=b_{1} \ldots
\end{array}\right\} u v=a_{1}-a_{p} b_{1} \cdots b_{q}
$$

empty word
commutation monoid
[W] equivalence class of the word $w \in A^{*}$

- product in the
$A^{*}=$ commutation monoid

$$
[u] \cdot[v]=[u v]
$$

independent of the choices of representants \boldsymbol{U} and V

Trace monoids
Computer Science model for parallelism concurrency access to data structures

Mazurkiewicz (1977) model of the logical behavior of safe Pelini nets

Diekert, Rosenberg ed. (1995) The book of traces

Heaps of pieces

(X.V. 1985)

Introduction Heaps

heap definition

- P set (of basic pieces)
- binary relation on $P\left\{\begin{array}{l}\text { symmetric } \\ \text { reflexive }\end{array}\right.$
(dependency relation)
- heap E, finite set of pairs $(\alpha, i) \quad \alpha \in P, i \in \mathbb{N} \quad$ (called pieces) projection level
(i)
(ii)
definition
- P set (of basic pieces)
- E binary relation on $P\left\{\begin{array}{l}\text { symmetric } \\ \text { reflexive }\end{array}\right.$
(dependency relation)
- heap E, finite set of pairs $(\alpha, i) \quad \alpha \in P, i \in \mathbb{N} \quad$ (called pieces)
projection level
(i) $(\alpha, i),(\beta, j) \in E, \alpha \mathcal{V}_{\beta} \Rightarrow i \neq j$
(ii) $(\alpha, i) \in E, i>0 \Rightarrow \exists \beta \in P, \alpha G_{\beta}$,

$$
(\beta, i-1) \in E
$$

ex: heap of segments over \mathbb{N}

$$
\begin{aligned}
P= & \{[a, b]=\{a, a+1, \ldots, b\}, 0 \leqslant a \leqslant b\} \\
& {[a, b] \&[c, d] \Leftrightarrow[a, b] \cap[c, c] \neq \phi }
\end{aligned}
$$

ex: heap of segments over \mathbb{N}

$$
\begin{aligned}
P= & \{[a, b]=\{a, a+1, \ldots, b\}, 0 \leqslant a \leqslant b\} \\
\mathcal{E} & {[a, b] \&[c, d] \Leftrightarrow[a, b] \cap[c, c] \neq \phi }
\end{aligned}
$$

Heaps monoids

Equivalence

commutation monoids
and heaps monoids
example:
heaps of dimers
ex: heaps of dimers on \mathbb{N}

$$
\begin{array}{rl}
P= & \left.\{i, i+]=\sigma_{i}, i \geqslant 0\right\} \\
\mathscr{E} & C \text { commutations } \\
& \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \text { if }|i-j| \geqslant 2
\end{array}
$$

$$
\underset{\substack{\text { commutation } \\ \text { relation }}}{C}=\bar{E}_{\substack{\text { complementary } \\ \\ \\ \\ \text { dependency } \\ \text { relation }}}
$$

$$
w=\sigma_{1} \sigma_{2} \quad \sigma_{4} \sigma_{1} \quad \sigma_{4} \quad \sigma_{3} \sigma_{0} \sigma_{4}
$$

$$
w=\sigma_{1} \sigma_{2} \sigma_{4} \sigma_{1} \sigma_{4} \sigma_{3} \sigma_{0} \sigma_{4}
$$

$$
w=\sigma_{1} \sigma_{2} \sigma_{4} \sigma_{1} \sigma_{4} \sigma_{3} \sigma_{0} \sigma_{4}
$$

$$
\begin{aligned}
& w=\sigma_{1} \sigma_{2} \sigma_{4} \sigma_{1} \quad \sigma_{4} \sigma_{3} \sigma_{0} \sigma_{4}
\end{aligned}
$$

$$
\begin{aligned}
& w=\sigma_{1} \sigma_{2} \sigma_{4} \sigma_{1} \quad \sigma_{4} \sigma_{3} \sigma_{0} \sigma_{4}
\end{aligned}
$$

$$
W=\sigma_{\sigma_{1}} \sigma_{2} \sigma_{4} \sigma_{1} \sigma_{4} \sigma_{3} \sigma_{0} \sigma_{4}
$$

$$
W=\sigma_{1}^{\sigma_{1}} \sigma_{2} \sigma_{4} \sigma_{1} \sigma_{4} \sigma_{3} \sigma_{0} \sigma_{4}
$$

$$
\begin{aligned}
& w=\sigma_{2} \sigma_{3} \sigma_{5} \sigma_{1} \sigma_{4} \sigma_{1} \sigma_{3} \\
& w=\sigma_{5} \sigma_{2} \sigma_{1} \sigma_{1} \sigma_{3} \sigma_{4} \sigma_{3}
\end{aligned}
$$

$$
\begin{aligned}
& P \subseteq \operatorname{Heap}(P, 8) \\
& \alpha \longleftrightarrow\{(\alpha, 0)\} \text {. } \\
& \varphi: P^{*} \longrightarrow \operatorname{Heap}(p, \varepsilon) \\
& \underset{\text { word }}{W}=\underset{\substack{\text { heap }} \alpha_{1} \alpha_{2} \cdots \alpha_{n}}{\alpha_{1} \alpha_{2} \odot \cdots \alpha_{n}} \\
& \begin{aligned}
& c \\
& \underset{\substack{\text { commutation } \\
\text { nelation }}}{ }=\sum_{\substack{\text { complementery } \\
\text { dependene } \\
\text { dentiny } \\
\text { reation }}} \frac{\text { Lemma 1 }}{u \equiv_{c}} \boldsymbol{v} \Rightarrow \varphi(u)=\varphi(v) \\
& \frac{\text { Lemma 2 }}{\varphi(u)}=\varphi(v) \Rightarrow u \equiv v
\end{aligned}
\end{aligned}
$$

Pefinition $\bar{\varphi}([u])=\varphi(u)$

Proposition $\overline{\mathcal{P}}$ is an isomorphism of monoids
$\operatorname{Heap}(P, \varepsilon) \simeq P^{*} / \equiv$
heaps monoid
commutation monoid relation

Symmetric group σ_{n}
n ! permutations

$$
\sigma_{i}=(i, i+1) \quad i=1, \ldots, \ldots, 1
$$

trampososition of two consecutive elements

$$
\left\{\begin{array}{c}
(i) \quad \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, \quad|i-j| \geqslant 2 \\
\text { (ii) } \quad \sigma_{i}^{2}=1, \\
\text { (iii) } \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1}, \sigma_{i} \sigma_{i+1} . \\
\text { M Maree-6xeler } \\
\text { Yang-Baxter }
\end{array}\right.
$$

Coxeter graph

Heaps as Posets

Poset (partially ordered set)

$$
(E, \leqslant) \leqslant \text { order relation }
$$

\leqslant order relation on E

- reflexive $x \preccurlyeq x$ all $x \in E$
- antisymmetric $x \preccurlyeq y$ and $y \leqslant x \Rightarrow x=y$
- transitive $x \preccurlyeq y$ and $y \leqslant z \Rightarrow x \leqslant z$ for all $x, y, z \in E$

Poset (partially ordered set)

$$
(E, \preccurlyeq) \quad \leqslant \text { order relation }
$$

covering relation
$x, y \in E, \quad y$ covers x
iff $x \prec y$ (strict) and $x \preccurlyeq z \preccurlyeq y \Rightarrow\left\{\begin{array}{l}z=x \\ 0=y \\ z=y\end{array}\right.$
the interval $[x, y]$ is reduced to $\{x, y\}$

Hasse diagram of a poset

minimal maximal clement of a poet

poset associated to a heap
"to be above"

Def. Poser (E, \preceq) associated to a heap E
\therefore transitive closure of the relation $\leqslant<$

$$
(\alpha, i) \underset{G}{\preccurlyeq}(\beta, j) \Leftrightarrow \alpha \mathcal{E}_{\beta}, i<j
$$

$$
W=\sigma_{1}^{\sigma_{1}} \sigma_{2} \sigma_{4} \sigma_{1} \sigma_{4} \sigma_{3} \sigma_{0} \sigma_{4}
$$

$$
W=\sigma_{1} \sigma_{1} \sigma_{2} \sigma_{4} \sigma_{1} \sigma_{4} \sigma_{3} \sigma_{0} \sigma_{4}
$$

$$
w=\sigma_{1} \sigma_{2} \quad \sigma_{4} \sigma_{1} \quad \sigma_{4} \quad \sigma_{3} \sigma_{0} \sigma_{4}
$$

linear extension of a
poses

$$
(E, \preccurlyeq)
$$

Def

$$
\begin{aligned}
& f: E \longrightarrow[1, n] \quad \text { ejection } \\
& x \leqslant y \Rightarrow f(x) \leqslant f(y)
\end{aligned}
$$

second definition of heap
F heap of pieces in P

- P set (of basic pieces)
- E dependency relation on P symmetric and reflexive
- is a post with order relation \preceq
- $E \xrightarrow{\pi} P \quad \pi \quad$ projection (t_{0} be above)

$$
\begin{gathered}
\text { (i) } \alpha, \beta \in E, \pi(\alpha) \mathbb{E} \pi(\beta) \Rightarrow{ }_{\text {or } \beta \leqslant \alpha} \alpha \leqslant \alpha \\
\text { (ii) } \alpha, \beta \in E, \alpha \preccurlyeq \beta, \beta \text { covers } \alpha \\
\Rightarrow \pi(\alpha) \mathbb{E} \pi(\beta)
\end{gathered}
$$

(i) $\alpha, \beta \in E, \pi(\alpha) \mathscr{E} \pi(\beta) \Rightarrow{ }_{\text {or }}^{\beta} 2 \leqslant \alpha$
(ii) $\alpha, \beta \in E, \alpha \leqslant \beta, \beta$ covers α $\Rightarrow \pi(\alpha) \in \pi(\beta)$

$$
\begin{aligned}
& P=\mathbb{N} \\
& i \varepsilon_{j} \Leftrightarrow|i-j| \leqslant 1
\end{aligned}
$$

$$
\text { (i) } \alpha, \beta \in E, \pi(\alpha) \& \pi(\beta) \Rightarrow{ }_{\text {or } \beta \leqslant \alpha}^{\alpha \leqslant \beta}+\begin{gathered}
\text { (ii) } \alpha, \beta \in E, \alpha \leqslant \beta, \beta \text { covers } \alpha \\
\Rightarrow \pi(\alpha) \in \pi(\beta)
\end{gathered}
$$

$$
\begin{aligned}
& P=\mathbb{N} \\
& i \xi_{j} \Leftrightarrow|i-j| \leqslant 1
\end{aligned}
$$

equivalent definition
(i) $\alpha, \beta \in E, \Pi(\alpha) \& \pi(\beta) \Rightarrow\left\{\begin{array}{c}\alpha \preccurlyeq \beta \\ 0 \preccurlyeq \alpha\end{array}\right.$
$\left(i i^{\prime}\right) \preccurlyeq$ is the transitive closure of the relation in (i)
$\alpha \leqslant \beta$ and $\pi(\alpha) \ell \pi(\beta)$
i.e. $\alpha \preccurlyeq \beta \Leftrightarrow \exists \alpha_{1}=\alpha \preccurlyeq \alpha_{2} \preccurlyeq \cdots \leqslant \alpha_{k}=\beta$,
with $\Pi\left(\alpha_{i}\right) \in \pi\left(\alpha_{i+1}\right)$ for $i=1, \ldots, k-1$.

heaps over a graph

(i) $\alpha, \beta \in E, \pi(\alpha) \mathscr{E} \pi(\beta) \Rightarrow{ }_{\text {or }}^{\beta} 2 \leqslant \alpha$
(ii) $\alpha, \beta \in E, \alpha \leqslant \beta, \beta$ covers α $\Rightarrow \pi(\alpha) \in \pi(\beta)$

$$
\begin{aligned}
& P=\mathbb{N} \\
& i \varepsilon_{j} \Leftrightarrow|i-j| \leqslant 1
\end{aligned}
$$

$G=(V, E) \longrightarrow$ heap monoid

$$
H(G)=H(V, E)
$$

finite pose (H, \preccurlyeq)
labeling map π

$$
H \underset{\pi}{\vec{\pi}} V
$$

(i) $\alpha, \beta \in E, \pi(\alpha) \ell \pi(\beta) \Rightarrow\left\{\begin{array}{c}\alpha \preccurlyeq \beta \\ \text { or } \beta \preccurlyeq \alpha\end{array}\right.$
(ii') \preccurlyeq is the transitive closure of the relation in (i)

$$
\alpha \leqslant \beta \text { and } \pi(\alpha) \in \pi(\beta)
$$

can be rewritten can be rewritten as :
(i) for every vertex $s \in V$ fiber over $s \in V$ $H_{s}=\mathbb{T}^{-1}(\{s\})$ is a chain
for any edges $\{s, t\}$ of G fiber over $\{\Delta, t\}$ $H_{s, t}=\pi^{-1}(\{s, t\})$ is a chain edge of G

$$
\begin{aligned}
& \text { chain }=\text { totally ordered } \\
& \text { subset of } H
\end{aligned}
$$

(ii) The order relation \preccurlyeq
is the transitive closure of the relations given by all chains of (i)'

$$
H_{s} \quad H_{s, t}
$$

(ie. the smallest partial ordering containing these chains)
$G=(V, E) \rightarrow$ heap monoid
fiber over $s \in V$

$$
H(G)=H(V, E)
$$

$G=(V, E) \rightarrow$ heap monoid
fiber over $\{\Delta, t\}$ edge of E

$$
H(G)=H(V, E)
$$

the inversion lemma

1/D
the inversion lemma

$$
\begin{array}{r}
(\text { Heaps })=\frac{1}{(\text { Trivial heaps) })} \\
\begin{array}{l}
\text { all } \text { ap eves }(\alpha, i)
\end{array}
\end{array}
$$

trivial heap

$$
\begin{aligned}
& \text { all pieces }(\alpha, i) \\
& \text { at level os }
\end{aligned}
$$

D
weight
valuation $\quad V(E)$

- V :

$v(\alpha, i)=v(\alpha)$
piece
$V(E)=\prod_{(\alpha, i) \in E} V(\alpha i)$
the inversion lemma

$$
\left(\sum_{E} V(E)\right)=\frac{1}{\left(\sum_{\substack{F \\ \text { heaps } \\ \text { tRivial } \\ \text { heaps }}}(-1)^{|F|} V(F)\right)}
$$

the inversion lemma

$$
\left(\sum_{E} V(E)\right)=\frac{1}{\sqrt[\substack{\text { heaps }}]{\left(\sum_{F}(-1)^{\mid F-1} V(F)\right)} \text { heaps } D}
$$

$$
\frac{1}{\left(1-t_{1}\right)\left(1-t_{2}\right)\left(1-t_{3}\right)\left(1-t_{4}\right)}=\sum_{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{3} \geqslant 0} t_{1}^{\alpha_{1}} t_{2} \alpha_{2} \alpha_{3} t_{4}^{\alpha_{4}}
$$

