Course IMSc, Chennaí, India January-March 2019
 Combinatorial theory of orthogonal polynomials and continued fractions

Xavier Viennot
CNRS, LaBRI, Bordeaux
www.viennot.org
mirror website
www.imsc.res.in/~viennot

Chapter 3

Continued fractions

Ch3a

IMSc, Chennaí February 11, 2019

Xavier Viennot
CNRS, LaBRI, Bordeaux www.viennot.org
mirror website
www.imsc.res.in/~viennot

This lecture is dedicated to my friend

(1948-2011)

Philippe Flajolet

Maths and Computer Science

ALEA

Séminaire Flajolet

X.V: Survey of 16 papers of P.F. on continued fractions Collected works, Vol 5, Ch 3.

Analytic Combinatorics

Number Theory
Continued
Fractions

Analysis \& Orthogonal P's

The last slide from a talk by P.F.

arithmetic continued fractions

continued fraction in number theory

$$
\phi-1=\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{\ldots}}}}
$$

中) golden

$$
\frac{1+\sqrt{5}}{2}
$$

convergents

$$
\frac{1}{\left.1+\frac{1}{1+1}\right\} 2}=\frac{2}{3}
$$

$$
\left.\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}}=\right\}_{3}^{\frac{3}{5}}
$$

$$
\left.\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}}\right\}=\frac{F_{k}}{F_{k+1}}
$$

Fibonacci numbers

$$
\begin{aligned}
& 1,1,2,3,5,8, \ldots \\
& F_{0}^{\prime} F_{1} F_{2} F_{3} F_{4} F_{5}
\end{aligned}
$$

$$
\begin{aligned}
\frac{F_{k}}{F_{k+1}} \longrightarrow & \phi-1 \\
& =\frac{\sqrt{5}-1}{2}
\end{aligned}
$$

Apéry $\quad \zeta(3)=\sum 1 / n^{3}$
irrational

$$
\begin{aligned}
& \zeta(3)=\frac{6}{\omega(a)-\frac{1^{6}}{\bar{\omega}(1)-\frac{2^{6}}{\bar{\omega}(2)-\frac{3^{6}}{\cdots \cdot}}}} \\
& \bar{\omega}(n)=(2 n+1)(17 n(n+1)+5)
\end{aligned}
$$

Some analytic continued fractions...

98

 DE

 DE FRACTIONIBVS CONTINVIS. FRACTIONIBVS CONTINVIS. DISSERTATIO.

 DISSERTATIO.}

AVCTORE
Leonh. Euler.

ร. 1.

VArii in Analyfin recepti funt modi quantitates, quae alias difficulter aflignari queant, commode exprimendi. Quantitates fcilicet irrationales et transceidentes, exiuismodi funt logarithmi, arcus circulares, aliarunaque cuxuarum: quadraturae, per feries infinitas exhiberi folent, quae, cum terminis conftent cognitis, valores illarum quantitatum fatis diftincte indicant. Series aujem iftae duplicis funt generis, ad quorum prius pertinent illae feries, quarum termini additione fubtractioneue funt connexi; ad pofterius vero referri poffunt eae, quarum termini multiplicatione coniunguntur. Sic vtroque modo area circuli, cuius diameter eft $=\mathrm{I}$, exprimi folet, priofe nimirum area circule aequalis dicitur $x-\frac{1}{3}+$ $\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-$ etc. in infinitum; pofteriore vero modo eadem
 finitum. Quarum ferierum illae reliquis merito praeferuntur, quae maxime conuergant, et pauciffimis fumendis. terminis valorem quantitatis quaefitae proxime praebeant.

§. 2. His duobus ferierum generibus non immerito fuperaddendum videtur tertium, cuius termini continua diui
atque: feries infinita: ita: fe: liabebit:: quae: aequalis' eft Huic fractioni: continuae::

$$
2:=\frac{x}{\frac{x+1}{2+1}+\frac{2 x x^{2}}{2-\frac{1}{1}}}
$$

Sif itaque ponatur $x=\mathrm{r}$; vt frat:

DIVERGENTIBVS.

$$
A=\frac{1}{1+x}
$$

Euler

$$
\overline{1+\frac{x}{1+2 x}}
$$

$$
\overline{x+2 x}
$$

$$
\overline{I+3 x}
$$

$$
\sqrt{x+3 x}
$$

224
 DESERIEBVS

6. 21. Datur vero alius modus in fummam bujus feriei inquirendi ex natura fractionum continuarum petitus, qui multo facilius et promtius negotium con ficit: fit enim formulam generalius exprimendo :
$\mathrm{A}=\mathrm{I}-\mathrm{x} x+2 x^{2}-6 x^{3}+24 x^{4}-120 x^{5}+720 x^{6}-50.40 x^{2}+$ ctc. $=\frac{\mathrm{I}}{1+\mathrm{B}}$

§. 22. Quemadmodum autem huiusmodi fractio-

$$
\begin{array}{r}
z=1-m x+m(m+n) x^{2}-m(m+n)(m+2 n) x^{y}-m(m+n) \\
(m+2 n)(m+3 n) x^{4}-\text { etc. }
\end{array}
$$

reperietur enim iisdem operationibus inflitutis:

$$
\begin{aligned}
& z=\frac{1}{x+m x} \\
& x+n x \\
& \overline{1+\frac{(m+n)}{1+2 n x}} \\
& \overline{1+\left(m+2 n^{\prime} x\right.} x \\
& \overline{x+(m+3 n) x} \\
& 1+4 n x \\
& \sqrt{1+\left(\frac{m+4 n) x}{1+5 n x}\right.} \\
& 1+\text { etc. }
\end{aligned}
$$

Eadem vero expreffin, aliaeque fimiles' facile ervi pos-

Srinivasa Ramanujan

$$
1887-1920
$$

$$
\begin{aligned}
& \frac{\text { Srinivasa Ramanujan }}{1}=e^{\frac{2 \pi}{5}} \\
& \left.1+\frac{e^{-2 \pi}}{1+\frac{e^{-4 \pi}}{1+\frac{e^{-6 \pi}}{1+\ldots .}}}=\left(\frac{5+\sqrt{5}}{2}\right)^{1 / 2}-\frac{1+\sqrt{5}}{2}\right) \\
& \text { … G.H. Hardy }
\end{aligned}
$$

[These formulas] defeated me completely. I had never seen anything in the least like this before. A single look at them is enough to show they could only be written down by a mathematician of the highest class. They must be true because no one would have the imagination to invent them.

Srinivasa Ramanujan

$$
1887^{-1920}
$$

Godfrey Harold Hardy

$$
1877 \text { - } 1947
$$

Ramanujan continued fraction

$$
\frac{1}{1+\frac{q}{1+\frac{q^{2}}{\cdots \cdots}}}
$$

Rogers - Ramanujan identities

$$
R_{I} \sum_{n \geqslant 0} \frac{q^{n^{2}}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\prod_{i \equiv 1,4} \frac{1}{\left(1-q^{i}\right)}
$$

$$
R_{\text {II }} \sum_{n \geqslant 0} \frac{q^{n^{2}+n}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\prod_{i \equiv 2,3} \frac{1}{\left(1-q^{i}\right)}
$$

$\bmod 5$

Reminding

Part I, Ch la, 29-46

formal power series algebra

formalisation

Formal power series algebra in one variable

QK commutative ring

$$
[\mathbb{K}=\mathbb{Z}, \mathbb{Q}, \mathbb{C}, \quad \mathbb{Z}[\alpha, \beta, \cdots]
$$

$$
a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}
$$

$[K[t]$ polynomials algebra

$$
\begin{aligned}
& \left(a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots\right) \\
& a_{0}+a_{1} t+a_{2} t+\ldots+a_{n} t^{n}+\ldots
\end{aligned}
$$

pK [[$[t]$ formal power series algebra (in one variable t and. coefficients in K)
algebra of formal power series

$$
\left\{\begin{array}{ll}
\text { sum } & f+g=h, a_{n}+b_{n}=c_{n} \\
\text { - product } & f g=h, c_{n}=\sum_{\substack{p+q-q \\
p \\
p, q \geqslant 0}} b_{q} \\
\text { product }\left(b y a \text { scalar) } \lambda f=h, c_{n}=\lambda a_{n}\right.
\end{array}\right] \begin{aligned}
& f=\sum_{n \geqslant 0} a_{n} t^{n}, g=\sum_{n \geqslant 0} b_{n} t^{n}, h=\sum_{n \geqslant 0} c_{n} t^{n}
\end{aligned}
$$

- Inverse

$$
\frac{1}{1-f}=1+f+f^{2}+\ldots+f^{n}+\ldots
$$

(oi $\quad \operatorname{ord}(f) \geqslant 1$)

- derivative

$$
f^{\prime} \quad \frac{d f}{d t}=\sum_{n \geqslant 1} n a_{n} t^{n-1}
$$

generating power series
of the coefficients (numbers a_{n})

$$
\sum_{n \geqslant 0} a_{n} t^{n}=f(t)
$$

(ordinary generating function)
exponential generating. function

$$
\sum_{n \geqslant 0} a_{n} \frac{t^{n}}{n!}
$$

summable family
example

$$
\begin{aligned}
& \sum_{i \geqslant 0}\left(t+t^{2}\right)^{i}= \\
& 1+\left(t+t^{2}\right) \\
& \qquad \begin{array}{c}
\left(t^{2}+2 t^{3}+t^{4}\right) \\
\downarrow \\
1
\end{array} \begin{array}{c}
\left(t^{3}+3 t^{4}+3 t^{5}+t^{6}\right) \\
\\
\\
\hline
\end{array} t^{4}+4 t^{5}+6 t^{6}+\ldots \\
& F_{n+1}=F_{n}+F_{n-1} \\
& F_{0}=F_{1}=1
\end{aligned}
$$

Reminding
 Part 1, Ch la, 55-62, 63-75

operations on combinatorial objects
formalisation
symbolic method Philippe Flajolet (1948-2011) (with Robert Sedgewick) Analytic Combinatorics (Cambirdge Uniw. Press, 2008)

Operations on combinatorial objects

Def class of valued combinatorial objects $d=(A, v) \quad A$ finite or enumerable set

$$
v: A \rightarrow \mathbb{K}[x]
$$

valuation
Def $f a=\sum_{\alpha \in A} v(\alpha)$
generating power series of objects $\alpha \in A$ weighted by V
ex: objects of size n

$$
x=\{t\} \quad v(\alpha)=t^{n}
$$

n is the size of $\alpha,|\alpha|=n$ $\boldsymbol{a}_{n}=\left|A_{\epsilon^{n}}\right| \quad$ (finite set)
$=$ number of objects $\alpha \in A$ of size n

$$
f_{a}=\sum a_{n} t^{n}
$$

$$
d=\left(A, V_{A}\right) \quad B=\left(B, V_{B}\right)
$$

- sum

$$
A \cap B=\varnothing
$$

$$
\begin{aligned}
\alpha+\beta & =\zeta \\
& =\left(c, v_{c}\right)
\end{aligned}
$$

$$
-C=A \cup B
$$

(disjoint union)
$-V_{C / A}=V_{A} \quad V_{C / B}=V_{B}$
Lemma $f_{e}=f_{\alpha}+f_{B}$

- product $\alpha \cdot B=\zeta$

$$
\begin{array}{cc}
-C=A \times B & =\left(C, v_{C}\right) \\
-(\alpha, \beta) \in C & v_{C}(\alpha, \beta)=v_{A}(\alpha) v_{B}(\beta) \\
\text { ex: "size" } & |(\alpha, \beta)|=|\alpha|+|\beta|
\end{array}
$$

ex: binary tree
Lemma $f_{e}=f_{a} \cdot f_{B}$
modern enumerative combinatorics
binary tree

$$
\underset{\substack{\text { inarary } \\ \text { free }}}{B}=\{\bullet\}+(B \times \underset{\text { root }}{\bullet} \times B)
$$

$$
y=1+t y^{2}
$$

algebraic equation

Dyck path

Dyck path

-

$$
\begin{aligned}
& m=1+t m+t^{2} m^{2}
\end{aligned}
$$

sequence

$$
\begin{aligned}
d=\left(A, v_{A}\right) & \quad c=\left(C, v_{C}\right) \\
\varepsilon & =\{\in\}+a+a^{2}+\ldots+a^{n}+\ldots \\
& =a^{*}
\end{aligned}
$$

Lemma $f a^{*}=\frac{1}{1-f_{a}}$
partition of an integer n

$$
\begin{aligned}
& \lambda=(6,6,6,5,4,4,4,4,2,2) \\
& n=43=6+6+6+5+4+4+4+4+2+2
\end{aligned}
$$

generating function for (integer) partitions

$$
\sum_{n \geqslant 0} a_{n} q^{n}
$$

$$
\begin{aligned}
& \because \because: 8 \\
& \because \because 8: \\
& \because \because: 8 \\
& \underbrace{}_{i} \\
& 1-q^{i}
\end{aligned}
$$

$$
\frac{1}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{m}\right)}
$$

$$
\begin{gathered}
\frac{1}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{m}\right)} \\
\prod_{i \geqslant 1} \frac{1}{\left(1-q^{i}\right)}
\end{gathered}
$$

generating function for the number of partitions of an integer n
continued fractions

$$
\text { Stich }{ }^{\text {jj }} \quad \underbrace{\frac{1}{1-\frac{\lambda_{1} t}{1-\frac{\lambda_{2} t}{\cdots \cdots . .}} 1-\frac{\lambda_{k} t}{\cdots \cdots}}}_{S(t ; \lambda)}
$$

$$
\begin{aligned}
& \frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{1-b_{1} t-\frac{\lambda_{2} t^{2}}{\cdots \cdots}}} \begin{array}{l}
\frac{\square(t ; b, \lambda)}{1-b_{k} t-\lambda_{n} t^{2}}
\end{array}
\end{aligned}
$$

Jacobi continued

$$
b=\left\{b_{k}\right\}_{k \geqslant 0} \lambda=\left\{\lambda_{k}\right\}_{k \geqslant 1}
$$

classical theory
continued fractions
J-fraction

$$
\left.J(t)=\frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{\cdots \cdots \cdots}} \begin{array}{rl}
1-b_{k} t-\lambda_{k+1} t^{2} \\
\cdots \cdots
\end{array}\right)
$$

orthogonal
Polynomials

$$
\begin{gathered}
P_{k+1}(x)= \\
\left(x-b_{k}\right) P_{k}(x)-\lambda_{k} P_{k-1}(x) \\
f\left(x^{n}\right)=\mu_{n} \\
\text { moments }
\end{gathered}
$$

classical theory
continued fractions
orthogonal
polynomials

$$
\begin{aligned}
& \text { J-fraction } \\
& \text { J-fraction } \\
& P_{k+1}(x)= \\
& \sum_{\substack{n \geqslant 0 \\
\begin{array}{c}
\text { generating } \\
\text { function }
\end{array}}}=\frac{1}{1-b_{0} t-t_{1} t^{2}} \\
& \left(x-b_{k}\right) P_{k}(x)-\lambda_{k} P_{k-1}(x) \\
& f\left(x^{n}\right)=\mu_{n} \\
& \text { moments }
\end{aligned}
$$

classical theory
continued fractions
J-fraction

$$
\sum_{\substack{n \geqslant 0 \\ \text { generating } \\ \text { function }}} \mu_{n} t^{n}=\frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{\cdots \cdots \cdot}} 1-b_{k} t .
$$

orthogonal
Polynomials

$$
\begin{gathered}
P_{k+1}(x)= \\
\left(x-b_{k}\right) P_{k}(x)-\lambda_{k} P_{k-1}(x) \\
f\left(x^{n}\right)=\mu_{n} \\
\text { moments }
\end{gathered}
$$

convergent

$$
J_{k}(t)=\frac{\delta P_{k}^{*}(x)}{P_{k+1}^{*}(x)}
$$

The fundamental Flajolet Lemma

The fundamental Flajolet Lemma

combinatorial interpretation of a continued fraction with weighted paths

COMBINATORIAL ASPECTS OF CONIINUED FRACTIONS

P. FLAJOLET

IRIA, 78150 Rocquencourt, France

Received 23 March 1979
Revised 11 February 1980

We show that the universal continued fraction of the Stieltjes-Jacobi type is equivalent to the characteristic series of labelled paths in the plane. The equivalence holds in the set of series in non-commutative indeterminates. Using it, we derive direct combinatorial proofs of continued fraction expansions for series involving known combinatorial quantities: the Catalan numbers, the Bell and Stirling numbers, the tangent and secant numbers, the Euler and Eulerian numbers. . . . We also show combinatorial interpretations for the coefficients of the elliptic functions, the coefficients of inverses of the Tchebycheff, Charlier, Hermite, Laguerre and Meixner polynomials. Other applications include cycles of binomial coefficients and inversion formulae. Most of the proofs follow from direct geometrical correspondences between objects.

Introduction

In this paper we present a geometrical interpretation of continued fractions together with some of its enumerative consequences. The basis is the equivalence

From chapter 29 of the book of Aigner and Ziegler "Proof from the BOOK" (about the LGV Lemma)

The essence of Mathematics is proving theorems - and so that is what mathematicians do: They prove theorems. But to tell the truth, what they really want to prove once in their lifetime, is a Lemma, like the one by Fatou in analysis, the Lemma of Gauss in number theory, or the Burnside Frobenius Lemma in combinatorics.

Now what makes a mathematical statement a true Lemma? First it should be applicable to a wide variety of instances, even seemingly unrelated problems. Secondly, the statement should, once you have seen it, be completely obvious. The reaction of the reader might well be of faint envy: Why haven't I noticed this before? And thirdly, on an esthetic level, the Lemma-including the proof - should be beautiful.

$$
\begin{aligned}
& \frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{1-b_{1} t-\frac{\lambda_{2} t^{2}}{\cdots}}} \begin{array}{l}
\frac{\cdots(t ; b, \lambda)}{1-b_{R} t-\lambda_{1} t^{2}} \cdots
\end{array}
\end{aligned}
$$

Jacobi continued

$$
b=\left\{b_{k}\right\}_{k \geqslant 0} \quad \lambda=\left\{\lambda_{k}\right\}_{k \geqslant 1}
$$

valuation V

$$
v(\omega)=b_{0} b_{1}^{2} \lambda_{1}^{2} \lambda_{2}
$$

$$
\begin{aligned}
& \sum_{\substack{\omega \\
M_{0} t-k \operatorname{kin} \\
p_{a}+h}} v(\omega) t^{|\omega|}=\frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{1-b_{1} t-\frac{\lambda_{2} t^{2}}{\cdots \cdots}}} \begin{array}{l}
\frac{J(t ; b, \lambda)}{1-b_{k} t-\lambda_{n} t^{2}}
\end{array}
\end{aligned}
$$

Jacobi continued
Philippe Flajpet fundamental

$$
b=\left\{b_{k}\right\}_{k \geqslant 0} \lambda=\left\{\lambda_{k}\right\}_{k \geqslant 1}
$$ Lemma

proof:

Primitive Motakin path

$$
\begin{array}{r}
\sum_{\substack{\omega \\
\text { Motakin } \\
\text { path }}} v(\omega) t^{|\omega|}=\frac{1}{1-b_{0} t-\lambda_{1} t^{2}(\text { same })} \\
\\
\begin{array}{c}
\delta:\left\{\begin{array}{l}
b_{k} \rightarrow b_{k+1} \\
\text { shift } \\
\text { o valuation }
\end{array}\right.
\end{array}, \begin{array}{l}
\lambda_{k} \rightarrow \lambda_{k+1}
\end{array}
\end{array}
$$

$$
\sum_{\substack{\omega \\ \text { Maskin } \\ \text { path }}} v(\omega) t^{|\omega|}=\frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{1-b_{1} t-\lambda_{2} t^{2}(11)}}
$$

$$
\begin{aligned}
& \sum_{\substack{\omega \\
M_{0} t-k \operatorname{kin} \\
p_{a}+h}} v(\omega) t^{|\omega|}=\frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{1-b_{1} t-\frac{\lambda_{2} t^{2}}{\cdots \cdots}}} \begin{array}{l}
\frac{J(t ; b, \lambda)}{1-b_{k} t-\lambda_{n} t^{2}}
\end{array}
\end{aligned}
$$

Jacobi continued
Philippe Flajpet fundamental

$$
b=\left\{b_{k}\right\}_{k \geqslant 0} \lambda=\left\{\lambda_{k}\right\}_{k \geqslant 1}
$$ Lemma

non-commutative power series

$$
\left.\left[b_{0}+a_{0}\left(b_{1}+a_{1}(\ldots . .)^{2}\right)^{2}\right)^{*} a_{1}\right]^{*}
$$

Continued fractions and
orthogonal polynomials
classical theory
continued fractions

J-fraction

$$
\sum_{\substack{n \geqslant 0 \\
\text { generating } \\
\text { function }}}=\frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{\frac{\cdots \cdots \cdots}{n}} t^{n}} \begin{array}{r}
1-b_{k} t-\lambda_{k+1} t^{2} \\
\frac{\cdots}{1}
\end{array}
$$

convergents

$$
J_{k}(t)=\frac{\delta_{k+1}^{P_{k}^{*}(x)}}{P_{k+1}^{*}(x)}
$$

orthogonal
Polynomials

$$
\begin{gathered}
P_{k+1}(x)= \\
\left(x-b_{k}\right) P_{k}(x)-\lambda_{k} P_{k-1}(x) \\
f\left(x^{n}\right)=\mu_{n} \\
\text { moments }
\end{gathered}
$$

continued fractions

J-fraition

$$
\begin{aligned}
& \mu_{n}=\sum_{\omega} v(\omega)=\frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{\cdots \cdots \cdots}} 1-\frac{b_{k} t-1}{\text { Mot kim path }} \begin{array}{l}
|\omega|=n
\end{array}
\end{aligned}
$$

Philippe Flajolet fundamental Lemma
(main) Theorem Ch1

$$
f^{P}\left(P_{k} P_{l} x^{n}\right)=\sum_{\omega} v(\omega) \lambda_{i} \cdots \lambda_{l}
$$

"Motzkin poth"
$|\omega|=n$ level $k \sim l$

classical theory
orthogonal
polynomials

$$
\begin{gathered}
P_{k+1}(x)= \\
\left(x-b_{k}\right) P_{k}(x)-\lambda_{k} P_{k-1}(x) \\
f\left(x^{n}\right)=\mu_{n} \\
\text { moments } \\
\mu_{n}=\sum_{\omega} v(\omega)
\end{gathered}
$$

Motzkim path

$$
|\omega|=n
$$

classical theory
continued fractions orthogonal
J-fraction

$$
\begin{gathered}
P_{k+1}(x)= \\
\left(x-b_{k}\right) P_{k}(x)-\lambda_{k} P_{k=1}(x) \\
f\left(x^{n}\right)=\mu_{n} \\
\text { moment }
\end{gathered}
$$

$$
\begin{gathered}
\mu_{n}=\sum_{\omega} V(\omega)=\frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{\cdots \cdots \cdot \cdot}} \\
\text { Motzkin path } \quad 1-b_{k} t-\frac{\lambda_{k}}{\cdots} \\
|\omega|=n
\end{gathered}
$$

$$
\mu_{n}=\sum_{\omega} v(\omega)
$$

Motzkin path

$$
|\omega|=n
$$

example:

Laguerre polynomials and

continued fractions

Laguerre polynomials

$$
\begin{aligned}
& b_{k}=(2 k+2) \quad \mu_{n}=(n+1)! \\
& \lambda_{k}=k(k+1)
\end{aligned}
$$

Laguerre history

$$
\begin{aligned}
& \sum_{n \geqslant 0} n!t^{n}=\frac{1}{1-1 t-\frac{1 t^{2} t^{2}}{1-3 t-\frac{2^{2} t^{2}}{1-5 t-3^{2} t^{2}}} \frac{\cdots \cdots}{1-\cdots}} \\
& \left\{\begin{array}{ll}
b_{k}=(2 k+1) \\
\lambda_{k}=k^{2}
\end{array} \quad \mu_{n}=n!\right.
\end{aligned}
$$

224 DESERIEBVS

6. 21. Datur vero alius modus in fummam hujus feriei inquirendi ex natura fractionum continuarum petitus, qui multo facilius et promtius negotium con ficit: fit enim formulaim generalius exprimendo:
$\mathrm{A}=\mathrm{r}-\mathrm{x} x+2 x^{2}-6 x^{3}+24 x^{4}-120 x^{5}+720 x^{6}-5040 x^{2}+\mathrm{ctc}=\frac{\mathrm{t}}{1+\mathrm{B}}$

DIVERGENTIBVS. 225

§. 22. Quemadmodum autem huiusmodi fractio-

$$
\begin{aligned}
& \lambda_{k}=\left\lceil\frac{k}{2}\right\rceil \\
& \sum_{n \geqslant 0} n!t^{n}=\frac{1}{1-\frac{1 t}{1-\frac{1 t}{1-\frac{2 t}{1-2 t}}}} \\
& \quad \text { Euler }
\end{aligned}
$$

Ch3b subdivided Laguerre history f. de Médicis', X.V. (1994)

- contraction of continued fractions example with subdivided Laguene (Euler continued fraction)

convergents

$$
\begin{aligned}
& \sum_{n \geqslant 0} \mu_{n} t^{n}= \frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{1-b_{1} t-\frac{\lambda_{2} t^{2}}{\cdots}}} \\
& J(t, b, \lambda) \\
& \frac{\square-b_{k},-\lambda_{n} t^{2}}{\cdots}
\end{aligned}
$$

Jacobi contimued

$$
b=\left\{b_{k}\right\}_{k \geq 0} \lambda=\left\{\lambda_{k}\right\}_{k \geqslant 1}
$$

$$
J_{k}(t)=\frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{1-b_{1} t-\frac{\lambda_{2} t^{2}}{\ldots \ldots}}}
$$

convergents

$$
\overline{1-b_{k} t}
$$

$$
J(t ; b, \lambda)
$$

Proposition

Proposition
convergents

$$
\begin{aligned}
& J_{k}(t)=\frac{\delta P_{k}^{*}(x)}{P_{k+1}^{*}(x)} \\
& T_{k}^{*}(t)=t^{k} P_{k}(1 / t) \quad \operatorname{deg}\left(P_{k}(t)\right)=k \\
& \left\{\delta P_{n}(x)\right\}_{n \geqslant 0}
\end{aligned}
$$

$$
\left\{P_{n}(x)\right\}_{n \geqslant 0}
$$

sequence
polynomioes

$$
\begin{gathered}
P_{k+1}(x)=\left(x-b_{k}\right) P_{k}(x)-\lambda_{k} P_{k-1}(x) \\
P_{0}=1 \quad P_{1}=\left(x-b_{0}\right) \\
\left\{\delta P_{n}(x)\right\}_{n \geqslant 0} \quad\left(\delta b_{k}\right)_{k \geqslant 0},\left(\delta \lambda_{k}\right)_{k \geqslant 1} \\
\quad \delta b_{k}=b_{k+1} \quad \delta \lambda_{k}=\lambda_{k+1}
\end{gathered}
$$

Convergents:
Linear algebra proof

PartI, Ch 1b, 79-91

Lemma

$$
S=\{1,2, \ldots, n\}
$$

$$
A=\left(a_{i, j}\right) \text { non matrix }
$$

linear algebra $\quad(I-A)_{i, j}^{-1}=\sum_{\omega} v(\omega)$ proof

$$
\begin{aligned}
& \text { path on } s \\
& i \sim j
\end{aligned} \quad \text { with } v(i, j)=a_{i, j}
$$

$$
\begin{gathered}
\left(I_{n}-A\right)^{-1}=\frac{\operatorname{cof}_{j i}\left(I_{n}-A\right)}{\operatorname{det}\left(I_{n}-A\right)} \\
I_{n}+A+A^{2}+\ldots+A^{n}+\ldots \\
A=\left(a_{i j}\right) \\
\end{gathered}
$$

valuation V

w Motzkin path

$$
v(\omega)=b_{0} b_{1}^{2} \lambda_{1}^{2} \lambda_{2}
$$

From Part IV, Ch ic, 92-98

$$
\begin{aligned}
& \operatorname{det}(A)=\sum_{\substack{\sigma \\
\text { permutarions } \\
\text { of } \sigma_{n}}}(-1)^{\operatorname{inv}(\sigma)} a_{1, \sigma(1)} \cdots a_{n, \sigma(n)}
\end{aligned}
$$

$$
D=\sum_{\left\{\gamma_{1}, \ldots, \gamma_{r}\right\}}(-1)^{r} v\left(\gamma_{1}\right) \ldots v\left(\gamma_{r}\right)
$$

Proposition

$$
N_{i j}=\sum_{\substack{\left\{\eta ; \gamma_{1}, \gamma_{r}\right\} \\ \eta \text { selfavaidling } \\ i n \rightarrow j \\ \text { path }}}(-1)^{r} v(\eta) v\left(\gamma_{i}\right) \cdots v\left(\gamma_{r}\right)
$$

$$
\begin{aligned}
& \text { convergents } \\
& J_{k}(t)=\frac{\delta P_{k}^{*}(x)}{P_{k+1}^{*}(x)}
\end{aligned}
$$

Convergents:

Bíective proof

$$
P_{k+1}^{*}(t)\left[\begin{array}{l}
\sum_{\omega} v(\omega) t^{|\omega|} \\
M o t k_{\text {in path }} \\
\text { height } \leqslant k
\end{array}\right]=\delta P_{k}^{*}(t)
$$

$$
P_{k+1}^{*}(t)\left[\begin{array}{l}
\sum_{\omega} v(\omega) t^{|\omega|} \\
M o t_{2} k_{\text {in path }} \\
\text { height } \leqslant k
\end{array}\right]=\delta P_{k}^{*}(t)
$$

Back to:

(direct) bijective proof of the identity

$$
\sum_{i=n}(m)=\frac{N_{i}}{D}
$$

Part I, Ch 1c, p 10-18

$$
D=\sum_{\left\{\gamma_{1}, \ldots, \gamma_{r}\right\}}(-1)^{r} v\left(\gamma_{1}\right) \ldots v\left(\gamma_{r}\right)
$$

Proposition

$$
N_{i j}=\sum_{\substack{\left\{\eta ; \gamma_{1}, \gamma_{r}\right\} \\ \eta \text { selfavaidling } \\ i n \rightarrow j \\ \text { path }}}(-1)^{r} v(\eta) v\left(\gamma_{i}\right) \cdots v\left(\gamma_{r}\right)
$$

(direct) bijective proof of

$$
\left(\sum_{i \sim j} v(\omega)\right) D=N_{i j}
$$

case (i) $\varphi(そ)=\left(\omega^{\prime} ;\left\{\gamma_{1}, . ., \gamma_{r}, \gamma\right\}\right)$
with $\omega \leqq\left(s_{0}, \ldots, s_{k-1}, s_{\ell}, \ldots, s_{n}\right)$

$$
\gamma=\left(s_{k}, s_{k+1}, \cdots, s_{\ell-1}\right)
$$

case (ii) $s_{\ell} \in \gamma_{j}=\left(s_{\ell}, y_{1}, \ldots, y_{p}\right)$
then $\varphi(\xi)=\left(\omega 1 ;\left\{\gamma_{1, \ldots}, \gamma_{j-1} \gamma_{j+1}, \ldots \gamma_{r}\right\}\right)$
with $=\omega^{\prime}=\left(s_{0}, \ldots, s_{\ell}, y_{1}, \ldots, y_{p}, s_{l}, s_{l+1}, \ldots, s_{n}\right)$

case (ii) $s_{\ell} \in \gamma_{j}=\left(s_{\ell}, y_{1}, \ldots, y_{p}\right)$
then $\varphi(\xi)=\left(\omega / i\left\{\gamma_{1}, \ldots, \gamma_{j, 1} \gamma_{j+1}, \ldots \gamma_{r}\right\}\right)$
with $\omega^{\prime}=\left(s_{0}, . ., s_{l}, y_{1}, \ldots, y_{p}, s_{l}, s_{l+1}, \ldots, s_{n}\right)$

$$
P_{k+1}^{*}(t)\left[\sum_{\omega} v(\omega) t^{|\omega|}\right]=\delta P_{k}^{*}(t)
$$

Some extensions of

$$
\begin{aligned}
& \text { convergents } \\
& J_{k}(t)=\frac{\delta P_{k}^{*}(x)}{P_{k+1}^{*}(x)}
\end{aligned}
$$

$$
0 \leqslant r, s \leqslant k
$$

$$
\mu_{n, r, s}^{\leqslant k}=\sum_{\substack{|\omega|=n \\ \text { "Motzkin path" } \\ r \sim \sim \Delta}} v(\omega)
$$

$$
\sum \mu_{n, r, s}^{\leqslant k} t^{n}=\frac{t^{s-r} p_{r}^{*}(t) \delta^{s+1} p_{k-s}^{*}(t)}{p_{k+1}^{*}(t)}
$$

$$
\begin{aligned}
& i_{0}^{\Delta} i_{0}^{k}
\end{aligned}
$$

$$
\begin{aligned}
& r=s=0 \quad J_{k}(t)=\frac{\delta P_{k}^{*}(t)}{P_{k+1}^{*}(t)}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n \geqslant 0} \mu_{n, 0, k}^{\leqslant k} t^{n}=\frac{t^{k}}{P_{k+1}^{*}(t)}
\end{aligned}
$$

$$
0 \leqslant \ell<k
$$

$$
\begin{gathered}
\frac{\delta P_{k}^{*}(t)}{P_{k+1}^{*}(t)}-\frac{\delta P_{l}^{*}(t)}{P_{l+1}^{*}(t)}=\frac{\left(\lambda_{1} \cdots \lambda_{l+1}\right) t^{2 l+2} \delta^{l+2} P_{k-l-1}^{*}(t)}{P_{l+1}^{*}(t) P_{k+1}^{*}(t)} \\
\delta P_{k}^{*}(t) P_{l+1}^{*}(t)-\delta P_{l}^{*}(t) P_{k+1}^{*}(t)=\left(\lambda_{i} \cdots \lambda_{l+1}\right) t^{2 l+2} \delta^{l+2} P_{k-l-1}^{*} \\
l=k-1 \\
\delta P_{k}^{*}(t) P_{k}^{*}(t)-\delta P_{k-1}^{*}(t) P_{k+1}^{*}(t)=\lambda_{i} \cdots \lambda_{k} t^{2 k}
\end{gathered}
$$

Contraction of continued fractions
continued fractions

$$
\text { Stich }_{\text {es }} \underbrace{\frac{1}{1-\frac{\lambda_{1} t}{1-\frac{\lambda_{2} t}{\cdots \cdots \cdot}}} 1}_{S(t ; \lambda)}
$$

$$
\begin{aligned}
& \frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{1-b_{1} t-\frac{\lambda_{2} t^{2}}{\cdots}}} \begin{array}{l}
\frac{\square(t ; b, \lambda)}{1-b_{k} t-\lambda_{n}}
\end{array} \\
&
\end{aligned}
$$

Jacobi continued

$$
b=\left\{b_{k}\right\}_{k \geqslant 0} \lambda=\left\{\lambda_{k}\right\}_{k \geqslant 1}
$$

$$
S(t ; \gamma)=J(t ; b, \lambda)
$$

Part I, Ch 2a, 55-58

bijection

> Dyck paths
> 2-colored Motzkin paths

$$
\begin{aligned}
& S(t ; \gamma)=J(t ; b, \lambda) \\
&\left\{\begin{array}{l}
b_{k}=\gamma_{2 k}+\gamma_{2 k+1} \\
\lambda_{k}=\gamma_{2 k} \gamma_{2 k-1}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& S(t ; \gamma)=1+\gamma_{1} t J\left(t ; b^{+}, \lambda^{+}\right) \\
&\left\{\begin{array}{l}
b_{k}^{+}=\gamma_{2 k+1}+\gamma_{2 k+2} \\
\lambda_{k}^{+}=\gamma_{2 k+1} \gamma_{2 k}
\end{array}\right.
\end{aligned}
$$

Some examples

$$
\begin{aligned}
& \tan t=\sum_{n \geqslant 0} T_{2 n+1} \frac{t^{2 n+1}}{(2 n+1)!} \quad \text { D. André (1880) } \\
& \frac{1}{\cos t}=\sum_{n \geqslant 0} E_{2 n} \frac{t^{2 n}}{(2 n)!} \quad \sec t=\frac{1}{\cos t}
\end{aligned}
$$

Part 1, Ch 3b, 61-79
Part 1, Ch 3b, complements

$$
\begin{aligned}
\tan t= & \sum_{n \geqslant 0} T_{2 n+1} \frac{t^{2 n+1}}{(2 n+1)!} \quad \text { D. André } \\
\frac{1}{\cos t} & =\sum_{n \geqslant 0} E_{2 n} \frac{t^{2 n}}{(2 n)!} \quad \sec t=\frac{1}{\cos t} \\
& E_{2 n} \quad\{1,5,61,1385, \ldots\}
\end{aligned}
$$

D. André (1880)
secant (Euler) alternating permutations numbers

$$
T_{2 n+1} \quad\{1,2,16,272,7936, \ldots\}
$$

tangent numbers

Permutations alternantes
D. Anché (1880)

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
6 & 2 & 9 & 7 & 4 & & 1 & 3
\end{array}\right)
$$

D. Foata
"Théorie gémétinque
M.P. Schiitzenberger polynomes Euleniens" (1970)

Euler

$$
\begin{aligned}
& 432 \\
& \text { CAPUT VIIL, } \\
& \text { erit: } \\
& \begin{array}{l}
a=1 \\
b=1 \\
\gamma=5 . \\
\delta=6 \mathrm{r} \\
\varepsilon=1385 \\
b=5052 \mathrm{I}
\end{array} \\
& \eta=2702765 \\
& \theta=199360981 \\
& t=19391512145 \\
& x=2404879661671 \\
& \text { \&c. }
\end{aligned}
$$

ex hifque valoribus obtinebitur:

Euler

$$
\begin{aligned}
& \text { erit hanc feriem } a b \text { illa fubtrahendo: }
\end{aligned}
$$

Laplace transform

$$
\int_{0}^{\infty} e^{-u} \tan (u t) d u=\frac{1}{1-\frac{1 \times 2 t^{2}}{1-\frac{2 \times 3 t^{2}}{1-\frac{3 \times 4 t^{2}}{\cdots \cdots-\cdots}}}}
$$

$$
\int_{0}^{\infty} e^{-u} \frac{1}{\cos (u t) d u}=\frac{1}{1-\frac{1 \times 1 t^{2}}{1-\frac{2 \times 2 t^{2}}{1-\frac{3 \times 3 t^{2}}{\cdots \cdots-\cdots t^{2}}}}}
$$

Bernoulli numbers

$$
B_{2 n} \quad \frac{1}{6}, \frac{1}{30}, \frac{1}{42}, \frac{1}{30}, \frac{5}{66}, \frac{691}{2730}, \frac{7}{6}, \ldots
$$

Genocchi numbers $G_{2 n}=2\left(2^{2 n}-1\right) B_{2 n}$
Bernoulli:

$$
\begin{array}{r}
2^{2 n} G_{2 n+2}=(n+1) T_{2 n+1} \\
G_{2 n} .\{1,1,3,17,155,2073, \ldots\}
\end{array}
$$

$G_{2 n} . \quad\{1,1,3,17,155,2073, \ldots\}$

Angelo Genocchi

$$
1817-1889
$$

Hinc igitur calculo inftituto reperietur:

$$
\begin{aligned}
& A=\quad I \\
& B=\quad \text { I } \\
& \epsilon=3 \\
& \mathrm{D}=\mathrm{I}^{17} \\
& \mathrm{E}=155^{\circ}=5.3 \mathrm{I} \\
& \mathrm{~F}=2073=69 \mathrm{r} \cdot 3 \\
& G=3^{8227}=7.546 \mathrm{I}=7 \cdot \frac{127.129}{3} . \\
& \mathrm{H}=929569=3617.257 \\
& I=28820619=43867 \cdot 9 \cdot 73 \quad \& c .
\end{aligned}
$$

Genocchi numbers $G_{2 n}=2\left(2^{2 n}-1\right) B_{2 n}$ Bernoull:

$$
2^{2 n} G_{2 n+2}=(n+1) T_{2 n+1}
$$

our Master

Marcel Paul Schützenberger

$$
1920-1996
$$

André permutations,
non-commutative differential equations

Genocchi numbers

$$
\sum_{n \geqslant 0} G_{2 n+2} t^{2 n}=\frac{1}{1-\frac{1 \times 1 t^{2}}{1-\frac{1 \times 2 t^{2}}{1-\frac{2 \times 2 t^{2}}{1-\frac{2 \times 3 t^{2}}{1-\frac{3 \times 3 t^{2}}{-1-1}}}}}}
$$

alternating $\quad \sigma \in F_{2 n-1}$
associated Laquerre histony
p_{i} is odd for $1 \leqslant i \leqslant 2 n-2$

$$
h=\left(\omega ; p_{1}, \ldots, P_{2 n-1}\right)
$$

« Alternative pistols »
D. Dumont, X.V. 1978

Complements

elliptic functions....

Jacobi elliptic functions

$$
\begin{cases}s n^{\prime}=c n \cdot d n, & \operatorname{sn}(0)=0 \\ c n^{\prime}=-d n \cdot s n, & \operatorname{cn}(0)=1 \\ d n^{\prime}=-k^{2} \operatorname{sn} \cdot c n, & \operatorname{dn}(0)=1\end{cases}
$$

Dumont, X.V.; Flayolet 80\% 3 different combinatorial interpretations

$$
\int_{0}^{\infty} e^{-u} c n(u t) d u=\frac{1}{1-\frac{1^{2} t^{2}}{1-\frac{2^{2} \alpha^{2} t^{2}}{1-\frac{3^{2} t^{2}}{1-\frac{4^{2} \alpha^{2} t^{2}}{---}}}} \text {.- }}
$$

THE FERMAT CUBIC, ELLIPTIC FUNCTIONS, CONTINUED FRACTIONS, AND A COMBINATORIAL EXCURSION

ERIC VAN FOSSE CONRAD AND PHILIPPE FLAJOLET
Kindly dedicated to Gérard \cdots Xavier Viennot on the occasion of his sixtieth birthday.

-

Abstract. Elliptic functions considered by Dixon in the nineteenth century and related to Fermat's cubic, $x^{3}+y^{3}=1$, lead to a new set of continued fraction expansions with sextic numerators and cubic denominators. The functions and the fractions are pregnant with interesting combinatorics, including a special Pólya urn, a continuoustime branching process of the Yule type, as well as permutations satisfying various constraints that involve either parity of levels of elements or a repetitive pattern of order three. The combinatorial models are related to but different from models of elliptic functions earlier introduced by Viennot, Flajolet, Dumont, and Françon.

In 1978, Apéry announced an amazing discovery: " $\zeta(3) \equiv \sum 1 / n^{3}$ is irrational". This represents a great piece of Eulerian mathematics of which van der Poorten has written a particularly vivid account in [59]. At the time of Apery's was known about the arithmetic nature of the zeta values at odd in unnaturally his theorem triggered interest in a whole range of probe recognized to relate to much "deep" mathematics [38,51]. Apery's orig proof crucially depends on a continued fraction representation of $\zeta(3)$.

Séminaire
de 54 等 SLC

$$
\begin{align*}
& \zeta(3)=\frac{6}{\varpi(0)-\frac{1^{6}}{\varpi(1)-\frac{2^{6}}{\varpi(2)-\frac{3^{6}}{\ddots}}}}, \tag{1}\\
& \text { where } \quad \varpi(n)=(2 n+1)(17 n(n+1)+5) .
\end{align*}
$$

Apény $\quad \zeta(3)=\sum 1 / n^{3}$
irrational

$$
\begin{aligned}
& \zeta(3)=\frac{6}{\bar{\omega}(a)-\frac{1^{6}}{\bar{\omega}(1)-\frac{2^{6}}{\bar{\omega}(2)-\frac{3^{6}}{\cdots \cdots}}}} \\
& \bar{\omega}(n)=(2 n+1)(17 n(n+1)+5)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{sm}(z)= & \operatorname{Inv} \int_{0}^{2} \frac{d t}{\left(1-t^{2}\right)^{2 / 3}} \\
& \begin{cases}\sin { }^{\prime}=\mathrm{cm}^{2} & \operatorname{sm}(0)=0 \\
\mathrm{~cm}^{\prime}=-\mathrm{sm}^{2} & \operatorname{cm}(0)=1 \\
& \sin (z)^{3}+\operatorname{cm}(z)^{3}=1\end{cases}
\end{aligned}
$$

Dixon (1890)

$$
\begin{aligned}
& \int_{0}^{\infty} \operatorname{sm}(u) e^{-u / x} d u=\frac{x^{2}}{1+b_{0} x^{3}-\frac{1 \cdot 2^{2} \cdot 3^{2} \cdot 4 x^{6}}{1+b_{1} x^{3}-\frac{4 \cdot 5^{2} \cdot 6^{2} \cdot 7 x^{6}}{1+b_{2} x^{3}-\ldots}}} \\
& b_{n}=2(3 n+1)\left((3 n+1)^{2}+1\right)
\end{aligned}
$$

Polya urn model

$$
\begin{array}{ll}
y \\
x & 0 \rightarrow 0
\end{array}
$$

history

$$
x \rightarrow y y \rightarrow y \underline{x} x \rightarrow y y y x \rightarrow x x y y x \rightarrow x y y y y x
$$

- nb of histories total n !
- starting 0, ending 000..0

$$
\begin{aligned}
& \sin (z)=z-4 \frac{z^{4}}{4!}-160 \frac{z^{7}}{7!}-20800 \frac{z^{10}}{10!}-\ldots \\
& \operatorname{cm}(z)=z-2 \frac{z^{3}}{3!}-40 \frac{z^{6}}{6!}-3680 \frac{z^{9}}{9!}-\cdots
\end{aligned}
$$

- nb of histories total n !
- starting 0, ending 000.-0

Jacobian elliptic functions
sn, on, dn X.V. (1980) Jacoei permutations Dumont (1979) Flajile obternating schelt generation cycle structure

- class of permutations
losed on parity
- 2-repeated permutations (with J. Fnangon)
(1989) Jacoliam elliptic \rightarrow sn, on, dn
3-repeated (*) permutotions
$\rightarrow-\sin (-z)$ continued fraction
-P. F. with R, Bacher (2010)
psendo factorial

$$
\sum_{n \geqslant 0} a_{n} z^{n}=\frac{1}{1+1 z-\frac{3 \cdot 1^{2} z^{2}}{1-1 z+\frac{2^{2} z^{2}}{1+3 z+\frac{3.3^{2} z^{2}}{1-3 z+\frac{4^{2} z^{2}}{\cdots}}}}}
$$

Weierstraß function 80 laltice sum

A Happy New Year 2010

Consider the integer sequence $\left(p_{n}\right)$, which starts as
$2,144,96768,268240896,2111592333312,37975288540299264, \ldots$
and is defined by sums over the square lattice,
$p_{n}:=(-1)^{n+1}(4 n+3)!\left[\int_{0}^{1} \frac{d t}{\sqrt{1-t^{4}}}\right]^{-4 n-4} \sum_{a, b=-\infty}^{+\infty}[(2 a+1)+(2 b+1) \sqrt{-1}]^{-4 n-4}$
The following continued fraction expansion holds:

$$
\sum_{n=0}^{\infty} p_{n} z^{n}=\frac{2}{1-2 \cdot 2^{2}\left(2^{2}+5\right) z-\frac{2 \cdot 3^{2} \cdot 4^{2} \cdot 5^{2} \cdot 6 z^{2}}{1-2 \cdot 6^{2}\left(6^{2}+5\right) z-\frac{6 \cdot 7^{2} \cdot 8^{2} \cdot 9^{2} \cdot 10 z^{2}}{1-2 \cdot 10^{2}\left(10^{2}+5\right) z-\ddots}}}
$$

[A follow up to R. Bacher and P. Flajolet, The Ramanujan Journal, 2010, in press.]

ॐ भूभुवंव: स्व:
तत्सवितुर्वरेण्यं।
भर्गो देवस्य धीमाहि,
धोयो यो न्:
प्रचोद्यात् ॥

