Course IMSc, Chennai, India
January-March 2019

Combinatorial theory of orthogonal polynomials and continued fractions

Xavier Viennot
CNRS, LaBRI, Bordeaux
www.viennot.org

mirror website
www.imsc.res.in/~viennot

Chapter 3 Continued fractions

Ch 3a

IMSc, Chennai February 11, 2019 Xavier Viennot
CNRS, LaBRI, Bordeaux
www.viennot.org

mirror website
www.imsc.res.in/~viennot

This lecture is dedicated to my friend

Philippe Flajolet

Happy New Year 2009

GIFT. Define the "equiharmonic numbers" by

$$K_{\nu} := \frac{(6\nu)!}{\Omega^{6\nu}} \sum_{(n_1, n_2) \in (\mathbb{Z} \times \mathbb{Z}) \setminus \{(0, 0)\}} \frac{1}{(n_1 e^{-2i\pi/3} + n_2 e^{2i\pi/3})^{6\nu}}, \qquad \Omega := \frac{1}{2\pi} \Gamma\left(\frac{1}{3}\right)^3.$$

The generating function of (K_{ν}) admits the continued fraction representation

$$\frac{7}{36} \sum_{\nu \ge 1} K_{\nu} z^{\nu - 1} = \frac{1}{1 - \frac{d_1 \cdot z}{1 - \frac{d_2 \cdot z}{1 - \frac{d$$

where
$$d_1 = \frac{10880}{13}$$
, $d_2 = \frac{13810240}{247}$, $d_n = \frac{1}{4} \frac{(3n)(3n+1)^2(3n+2)^2(3n+3)^2(3n+4)}{(6n+1)(6n+7)}$.

Maths and Computer Science

ALEA

Séminaire Flajolet

X.V.: Survey of 16 papers of P.F. on continued fractions

Collected works, Vol 5, Ch 3.

Analytic Combinatorics

With Robert Sedgewick Price Leroy P.Steele (2019)

60th birthday Photo M. Soria, Paris, 1-2 Dec. 2008 Special Functions

Probabilistic Processes

Number Theory

Continued Fractions

Combinatorics

Summability

Analysis & Orthogonal P's

The last slide from a talk by P.F.

arithmetic continued fractions

continued fraction in number theory

$$\phi - 1 = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 - \frac{$$

convergents

$$\frac{1}{1+\frac{1}{1+1}} = \frac{2}{3}$$

$$\frac{1}{1+\frac{1}{1+1}} = \frac{3}{5}$$

Fibonacci numbers

$$\frac{F_{k}}{F_{k+1}} \longrightarrow \phi - 1$$

$$= \frac{\sqrt{5} - 1}{2}$$

$$\frac{2(3)}{\varpi(a)} = \frac{6}{\varpi(a) - \frac{16}{\varpi(a) - \frac{26}{\varpi(a) - \frac{36}{\varpi(a) - \frac$$

Some analytic continued fractions ...

DE

FRACTIONIBVS CONTINVIS.

DISSERTATIO.

AVCTORE Leonb. Euler.

§. I.

Arii in Analysin recepti sunt modi quantitates, quae alias difficulter assignari queant, commode exprimendi. Quantitates scilicet irrationales et transcendences, cuiusmodi sunt logarithmi, arcus circulares, aliarumque curuarum quadraturae, per series infinitas exhiberi solent, quae, cum terminis constent cognitis, valores illarum quantitatum fatis distincte indicant. Series auiem istae duplicis sunt generis, ad quorum prius pertinent illae series, quarum termini additione subtractioneue sunt connexi; ad posterius vero referri possunt eae, quarum termini multiplicatione coniunguntur. Sic vtroque modo area circuli, cuius diameter est = 1, exprimi solet; priore nimirum area circuli aequalis dicitur 1-1+ ½-1/2-etc. in infinitum; posteriore vero modo eadem area aequatur huic expressioni 2.4 4.6.6.8.8.10. 10 etc. in infinitum. Quarum serierum illae reliquis merito praeseruntur, quae maxime convergant, et paucissimis sumendis terminis valorem quantitatis quaesitae proxime praebeant.

§. 2. His duobus serierum generibus non immerito superaddendum videtur tertium, cuius termini continua diui-

atque series infinita ita se habebit ::

z=x-1x=+ E. 3 x5- D. 3.5x7-+ E. 3. 5.7x9-etc.

quae aequalis est huic fractioni continuae:

$$\begin{array}{c}
x \\
\hline
1 + 2xx \\
\hline
1 + 3xx \\
\hline
1 + 5xx \\
\hline
1 + 6xx \\
\hline
\end{array}$$

Si itaque ponatur x=1, vt frat:

Euler

$$A = \frac{1}{1+x}$$

$$1+\frac{x}{1+2x}$$

$$1+\frac{2x}{1+3x}$$

$$1+\frac{3x}{1+4x}$$

DE SERIEBVS

§. 21. Datur vero alius modus in summam huius seriei inquirendi ex natura fractionum continuarum petitus, qui multo facilius et promtius negotium consicit: sit enim formulam generalius exprimendo:

$$A = I - Ix + 2x^2 - 6x^5 + 24x^4 - I20x^5 + 720x^6 - 5040x^7 + etc. = \frac{1}{1+B}$$

§. 22. Quemadmodum autem huiusmodi fractio-

$$z = 1 - mx + m(m+n)x^2 - m(m+n)(m+2n)x^3 - m(m+n)$$

 $(m+2n)(m+3n)x^4 - \text{etc.}$

reperietur enim iisdem operationibus institutis:

$$z = \frac{1}{1+mx}$$

$$\frac{1+(m+n)x}{1+(m+2n)x}$$

$$\frac{1+(m+2n)x}{1+(m+3n)x}$$

$$\frac{1+(m+3n)x}{1+(m+4n)x}$$

$$\frac{1+5nx}{1+etc.}$$

Eadem vero expressio, aliaeque similes facile erui pos-

Srinivasa Ramanujan 1887 - 1920

Srinivasa Ramanujan
$$\frac{1}{1 + e^{-2\pi}} = e^{\frac{2\pi}{5}} \left(\left(\frac{5+\sqrt{5}}{2} \right)^{\frac{1}{2}} \frac{1+\sqrt{5}}{2} \right)$$

$$\frac{1}{1 + e^{-2\pi}} = e^{\frac{2\pi}{5}} \left(\left(\frac{5+\sqrt{5}}{2} \right)^{\frac{1}{2}} \frac{1+\sqrt{5}}{2} \right)$$

$$\frac{1}{1 + e^{-4\pi}} = e^{-6\pi}$$

$$\frac{1}{1 + e^{-6\pi}} = e^{\frac{1}{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{\frac{1}{2}} = \frac{1+\sqrt{5}}{2}$$

$$\frac{1}{1 + e^{-6\pi}} = e^{\frac{1}{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{\frac{1}{2}} = \frac{1+\sqrt{5}}{2}$$

$$\frac{1}{1 + e^{-6\pi}} = e^{\frac{1}{5}} = \frac{1+\sqrt{5}}{2}$$

$$\frac{1}{1 + e^{-6\pi}} = \frac{1+\sqrt{5}}{2}$$

[These formulas] defeated me completely. I had never seen anything in the least like this before. A single look at them is enough to show they could only be written down by a mathematician of the highest class. They must be true because no one would have the imagination to invent them.

Srinivasa Ramanujan 1887 - 1920

Godfrey Harold Hardy 1877 - 1947

Ramanujour continued fraction

Rogers - Ramanujan identities
$$R_{I} = \frac{q^{n^{2}}}{(1-q)(1-q^{2})...(1-q^{n})} = \frac{1}{(1-q^{i})}$$
mod $\frac{1}{(1-q^{i})}$

$$R_{II} = \sum_{n \ge 0} \frac{q^{n^2 + n}}{(1 - q)(1 - q^2) \cdots (1 - q^n)} = \prod_{i = 3, 3} \frac{1}{(1 - q^i)}$$
mod 5

Reminding

Part I, Ch Ia, 29-46

formal power series algebra

formalisation

Formal power series algebra in one variable

[K commutative ring. $K = \mathbb{Z}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}[\alpha, \beta, ...]$ ao + a,t + a, t + + an t

[K[t] polynomials algebra

 $(a_0, a_1, a_2, \dots, a_n)$ $a_0 + a_1 t + a_2 t + \dots + a_n t^n + \dots$

[K[[t]] formal power series algebra

(in one variable t and coefficients in [K)

algebra of formal power series

Sum
$$\begin{cases}
+ g = h, & a_n + b_n = c_n \\
- product
\end{cases}$$

$$\begin{cases}
- product
\end{cases}$$

$$(- product
\end{cases}$$

$$\begin{cases}
- product
\end{cases}$$

$$(- product$$

$$(- product
\end{cases}$$

$$(- product$$

Inverse
$$\frac{1}{1-\frac{1}{4}} = 1 + \frac{1}{5} + \frac{1}{5} + \dots + \frac$$

derivative
$$\frac{df}{dt} = \sum_{n \ge 1} n a_n t^{n-1}$$

generating power series
of the coefficients (numbers a_n) $\sum_{n \ge 0} a_n t^n = f(t)$ (ordinary generating function)

exponential generating
$$\sum_{n \geq 0} a_n \frac{t^n}{n!}$$

summable

example

family

$$\sum_{i \geqslant 0} (t + t^2)^i = 1$$
 $i \geqslant 0$
 $1 + (t + t^2)$
 $(t^2 + 2t^2 + t^4)$
 $(t^3 + 3t^4 + 3t^5 + t^6)$
 $(t^4 + 4t^5 + 6t^6 + ...$
 $t = F_1 = 1$

Filonacci

Reminding Part I, Ch 1a, 55-62, 63-75

operations on combinatorial objects

formalisation

symbolic method

Philippe Flajolet (1948-2011)

(with Robert Sedgewick)

Analytic Combinatorics

(Cambridge Univ. Press, 2008)

Operations on combinatorial objects

Def- class of valued combinatorial objects

$$d = (A, V)$$
 A finite or enumerable set

 $V : A \longrightarrow [K[X]]$

valuation

Def-
$$\beta \alpha = \sum_{\chi \in A} V(\chi)$$
generating power series
of objects $\chi \in A$ weighted by V

ex: objects of size
$$n$$
 $X = \{t\}$
 $V(\alpha) = t^n$
 $a_n = |A_{t^n}|$ (finite set)

 $= number of objects $\alpha \in A$ of size n
 $a_n = \sum_{n=1}^{\infty} a_n t^n$$

ANB =
$$\emptyset$$

$$A+B = \emptyset$$

$$= (C, V_c)$$

$$- C = A \times B$$

$$-C = A \times B$$

$$-(\alpha, \beta) \in C$$

$$\vee_{\alpha}(\alpha, \beta) = \vee_{\alpha}(\alpha) \vee_{\beta}(\beta)$$

ex: binary tree.

Lemma Le = La BB

modern enumerative combinatorics binary. tree

$$B = \{\bullet\} + (B \times \bullet \times B)$$
linary
tree

$$y = 1 + ty^2$$

algebraic equation

Dyck Path

sequence

$$\alpha = (A, v_A) \qquad \mathcal{E} = (C, v_C) \\
\mathcal{E} = \{\mathcal{E}\} + \alpha + \alpha^2 + \dots + \alpha^n + \dots \\
= \alpha^*$$

partition of an integer n

Ferrers

generating function for (integer) partitions

 $\sum_{n\geqslant 0}$ $\alpha_n q^n$

 $\frac{1}{(1-q)(1-q^2)\cdots(1-q^m)}$

$$\frac{1}{(4-q)(4-q^2)\cdots(4-q^m)}$$

$$\frac{1}{i \geqslant 1} \left(\frac{1}{(1-q^i)} \right)$$

for the number of partitions of an integer n

analytic continued fractions

continued fractions

Stielzes

J(t; b,)

Jacobi Continued fraction

$$b = \{b_{k}\}$$

$$k \ge 0$$

classical

continued fractions

J-fraction

J(t) = 1-6, t- 1/42

1-bet- Lete

theory

polynomial.

 $T_{k+1}(x) = (x-b_k)T_k(z) - \lambda_k T_k(x)$

f(z")= pen

theory classical continued fractions Ten (2) = J-fraction (x-by) P (z)- > P (x) = (2")= pen moments

classical theory polynomia continued fractions J-fraction Ten (2) = (x-by) P (z)- > P (x) $\sum_{n\geq 0} \mu_n t^n = \frac{1}{1-b_0 t - \lambda_1 t^2}$ generating = (2")= pm moments

J_k(t) =
$$\frac{ST_k^*(z)}{T_k^*(z)}$$

The fundamental Flajolet Lemma

The fundamental Flajolet Lemma

combinatorial interpretation of a continued fraction with weighted paths

COMBINATORIAL ASPECTS OF CONTINUED FRACTIONS

P. FLAJOLET

IRIA, 78150 Rocquencourt, France

Received 23 March 1979 Revised 11 February 1980

We show that the universal continued fraction of the Stieltjes-Jacobi type is equivalent to the characteristic series of labelled paths in the plane. The equivalence holds in the set of series in non-commutative indeterminates. Using it, we derive direct combinatorial proofs of continued fraction expansions for series involving known combinatorial quantities: the Catalan numbers, the Bell and Stirling numbers, the tangent and secant numbers, the Euler and Fulerian numbers.... We also show combinatorial interpretations for the coefficients of the elliptic functions, the coefficients of inverses of the Tchebycheff, Charlier, Hermite, Laguerre and Meixner polynomials. Other applications include cycles of binomial coefficients and inversion formulae. Most of the proofs follow from direct geometrical correspondences between objects.

Introduction

In this paper we present a geometrical interpretation of continued fractions together with some of its enumerative consequences. The basis is the equivalence From chapter 29 of the book of Aigner and Ziegler "Proof from the BOOK" (about the LGV Lemma)

The essence of Mathematics is proving theorems - and so that is what mathematicians do: They prove theorems. But to tell the truth, what they really want to prove once in their lifetime, is a Lemma, like the one by Fatou in analysis, the Lemma of Gauss in number theory, or the Burnside - Frobenius Lemma in combinatorics.

Now what makes a mathematical statement a true Lemma? First it should be applicable to a wide variety of instances, even seemingly unrelated problems. Secondly, the statement should, once you have seen it, be completely obvious. The reaction of the reader might well be of faint envy: Why haven't I noticed this before? And thirdly, on an esthetic level, the Lemma - including the proof - should be beautiful.

$$b = \{b_{k}\}_{k \geqslant 0} \lambda = \{\lambda_{k}\}_{k \geqslant 1}$$

J(t; b,)

Jacobi

fraction

Philippe Flajslet fundamental Lemma

proof:

 $\sum_{\omega} v(\omega) t^{(\omega)} = \frac{1}{1 - \sum_{\substack{\omega \\ \text{path}}} v(\omega)} v(\omega)$

$$\sum_{\omega} v(\omega) t^{|\omega|} = \frac{1}{1 - b_0 t - \lambda_1 t^2 \text{ (same)}}$$
Motekin
path

$$\sum_{\omega} v(\omega)t^{|\omega|} = \frac{1}{1 - b_0 t - \lambda_1 t^2}$$
Motekin path
$$\frac{1}{1 - b_1 t - \lambda_2 t^2} \left(\frac{1}{1}\right)$$

J(t; b,)

Jacobi

fraction

Philippe Flajslet fundamental Lemma

Continued fractions and orthogonal polynomials

theory classical continued fractions polynomia J-fraction Ten (2) = $\sum_{n\geq 0} \mu_n t^n = \frac{1}{1-b_0 t - \lambda_1 t^2}$ generating
function (x-by) P(z)- > P(x) {(x ")= pen moments

Convergents
$$J_{k}(t) = \frac{SP_{k}(z)}{P_{k+1}^{*}(z)}$$

continued fractions

$$J = \text{fractions}$$

$$V(\omega) = \frac{1}{1 - b_0 t - \lambda_1 t^2}$$

$$|\omega| = n$$

$$|\omega| = n$$

Philippe Flajolet fundamental Lemma

Ch1 (main) Theorem

classical

 $\frac{\text{orthogonal}}{\text{Polynomials}}$ $\frac{P_{ky}(z)}{(z-b_k)P_{k}(z)-\lambda_{k}P_{k}(z)}$

 $\mu_n = \sum_{\omega} V(\omega)$

Motzkin path

continued fractions

J-fraction

$$V(\omega) = \frac{1}{1-b_0 t - \lambda_0 t^2}$$

Motekin path

 $V(\omega) = \frac{1}{1-b_0 t - \lambda_0 t^2}$

Moments

Continued fractions

Orthogonal

Polynomials

 $V(x) = \frac{1}{(x-b_0)P_{\mu}(x) - \lambda_0 P_{\mu}(x)}$
 $V(\omega) = \frac{1}{1-b_0 t - \lambda_0 t^2}$

Motekin path

 $V(\omega) = \frac{1}{1-b_0 t - \lambda_0 t^2}$

Moments

$$\mu_n = \sum_{\omega} V(\omega)$$

example:

Laguerre polynomials and continued fractions

Laguerre polynomials

Loguerre

$$\frac{1}{1-1t-1^2t^2}$$

$$\frac{1-3t-2^2t^2}{1-5t-3^2t^2}$$

$$\begin{cases} b_{k} = (2k+1) \\ \lambda_{k} = k^{2} \end{cases}$$

§. 21. Datur vero alius modus in summam huius seriei inquirendi ex natura fractionum continuarum petitus, qui multo facilius et promtius negotium conficit: sit enim formulam generalius exprimendo:

$$A = I - Ix + 2x^2 - 6x^5 + 24x^4 - I20x^5 + 720x^6 - 5040x^7 + etc. = \frac{1}{1+B}$$

Euler

DIVERGENTIBVS. 225

$$A = \frac{1}{1+x}$$

$$1+x$$

$$1+2x$$

$$1+3x$$

$$1+4x$$

$$1+5x$$

$$1+6x$$

$$1+6x$$

$$1+7x$$
etc.

§. 22. Quemadmodum autem huiusmodi fractio-

Ch 3b

A. de Médicis, X.V. (1994)

example with subdivided Laguerre histories (Euler continued fraction)

convergents

$$\sum_{n \neq 0} \mu_n t^n = \frac{1}{1 - b_0 t - \frac{\lambda_1 t^2}{1 - b_1 t - \lambda_2 t^2}}$$

1-6t-12

J(t; b,))

Jacobi continued fraction

convergents

Proposition

Proposition

$$\frac{\text{convergents}}{\int_{\mathcal{K}} (t) = \frac{S \mathcal{T}_{k}^{*}(z)}{\mathcal{P}_{k+1}^{*}(z)}}$$

$$T_k^*(t) = t^k P_k(1/t)$$

$$T_0 = 1 \qquad T_1 = (x - b_0)$$

$$\{SP_n(x)\}_{n\geqslant 0}$$

$$Sb_k = b_{k+1}$$
 $S\lambda_k = \lambda_{k+1}$

Convergents:

Linear algebra proof

Part I, Ch 1b, 79-91

Lemma
$$S = 71,2,...,n$$
?

$$A = (a_{i,j}) \quad \text{nxn} \quad \text{matrix}$$

$$(I-A)^{-1} = \sum_{\alpha_{i,j}} v(\alpha)$$

$$\text{path on } S \quad \text{with } v(i,j) = a_{i,j}$$

$$(\mathbf{I}_{n} - \mathbf{A}) = \frac{\cosh(\mathbf{I}_{n} - \mathbf{A})}{\det(\mathbf{I}_{n} - \mathbf{A})}$$

$$\mathbf{I}_{n} + \mathbf{A} + \mathbf{A}^{2} + \dots + \mathbf{A}^{2} + \dots$$

$$\mathbf{A} = (\mathbf{a}_{ij})$$

$$\mathbf{A} = (\mathbf{a}_{ij})$$

From Part IV, Ch Ic, 92-98

$$det(A) = \sum_{\sigma \in \mathcal{F}} (-1) a_{\sigma,\sigma(n)} a_{\sigma,\sigma(n)}$$

$$e^{\text{remutations}} e^{\text{remutations}}$$

$$det(\mathbf{I}_{n}-\mathbf{A}) = \sum_{\{X_{i}, \dots, X_{i}\}} (-1)^{r} v(X_{i}) \dots v(X_{i})$$

$$2 \text{ ly 2 disjoint yells}$$

Proposition

$$\sum_{\text{path on S}} V(\omega) = \frac{N_{i,j}}{D}$$

2 by 2 disjoint

(-1) v(y) v(x) ... v(x)

$$\frac{\text{convergents}}{\int_{k}^{k}(t)} = \frac{\sum_{k=1}^{k}(z)}{\sum_{k=1}^{k}(z)}$$

Convergents:

Bijective proof

sign-neversing involution

$$P_{k+1}^{*}(t)$$

$$\sum_{\omega} V(\omega) t^{|\omega|}$$

$$\sum_{\omega} Notzkin path$$

$$height \leq k$$

Back to:

(direct) bijective proof of the identity

$$\sum_{i \in S_j} V(\omega) = \frac{N_{i,j}}{D}$$
path on S
insj

Part I, Ch Ic, p 10-18

Proposition

$$\sum_{\text{path on S}} V(\omega) = \frac{N_{i,j}}{D}$$

2 by 2 disjoint

(-1) v(y) v(x) ... v(x)

(direct) bijective proof of $\left(\sum_{i \in \mathcal{V}} \mathbf{v}(\omega)\right) \mathbf{D} = \mathbf{N}_{ij}$

case (i)
$$\varphi(\xi) = (\omega'; \{\chi_1, ..., \chi_r, \chi_r\})$$
with $\omega \leq (\lambda_0, ..., \lambda_{k-1}, \lambda_k, ..., \lambda_n)$

$$\chi = (\lambda_k, \lambda_{k+1}, ..., \lambda_{k-1})$$

case (ii)
$$S_{\xi} \in \mathcal{E}_{\xi} = (S_{\xi}, y_{1}, ..., y_{T})$$

then $Q(\xi) = (\omega', \{x_{1}, ..., x_{j+1}, ..., x_{j+1}, ..., x_{r}\})$
with $\omega' = (S_{0}, ..., S_{\xi}, y_{1}, ..., y_{T}, s_{\xi}, s_{\xi}, ..., s_{n})$

case (ii)
$$S_{\xi} \in \mathcal{E}_{\xi} = (S_{\xi}, y_{1}, ..., y_{T})$$

then $C_{\xi} \in \mathcal{E}_{\xi} = (\omega', \{x_{1}, ..., x_{j+1}, ..., x_{j+1}, ..., x_{T}\})$
with $\omega' = (S_{0}, ..., S_{\xi}, y_{1}, ..., y_{T}, s_{\xi}, s_{\xi}, ..., s_{n})$

$$P_{k+1}^{*}(t)$$

$$\sum_{\omega} V(\omega) t^{|\omega|}$$

$$\sum_{\omega} Motzkin path$$

$$height \leq k$$

Some extensions of

$$\frac{\text{convergents}}{J_k(t)} = \frac{ST_k(z)}{T_{ku}(z)}$$

0< r, s < k

$$\sum_{0 \le r \le s \le k} \sum_{r} \sum_{k=s}^{k} t^{n} = \frac{t^{s-r} P_{r}^{*}(t) S^{s+1} P_{k-s}^{*}(t)}{P_{k+s}^{*}(t)}$$

$$\sum_{\substack{0 \le r \le a \le k \\ r}} \sum_{k=1}^{k} \frac{k^{n}}{k^{n}} = \frac{\sum_{k=1}^{k} (k)}{\sum_{k=1}^{k} (k)} \frac{\sum_{k=1}^{k} (k)}{\sum_{k=1}^{k} (k)}$$

$$= (\lambda_r - \lambda_{s+1}) \frac{t^{r-s} \mathbf{P}_{k+1}^*(t) \mathbf{P}_{k+1}^*(t)}{\mathbf{P}_{k+1}^*(t)}$$

$$\frac{\mathbf{J}_{k}(t)}{\mathbf{P}_{k+1}^{*}(t)}$$

$$\sum_{n \geq 0} \mu_{n,o,k}^{\leq k} t^n = \frac{t^k}{T_{k+1}^{*}(t)}$$

0<1< k

$$\frac{SP_{k}^{*}(t)}{P_{k+1}^{*}(t)} = \frac{(1-t)^{2\ell+2} \ell+2}{P_{k+1}^{*}(t)} + \frac{2\ell+2}{SP_{k+1}^{*}(t)} +$$

Contraction of continued fractions

continued

Stielzes

$$b = \{b_{k}\}$$

$$\lambda = \{\lambda_{k}\}_{k \geq 1}$$

$$S(t;\delta) = J(t;b,\lambda)$$

Part I, Ch 2a, 55-58

bijection

Dyck paths

2-colored Motzkin paths

$$S(t;\delta) = J(t;b,\lambda)$$

$$S(t;8) = 1 + x(t)(t;6,x)$$

$$\begin{cases} \frac{1}{2k} = 8_{2k+1} + 8_{2k+2} \\ \frac{1}{2k} = 8_{2k+1} + 8_{2k} \end{cases}$$

Some examples

$$\frac{1}{\cos t} = \sum_{n \geq 0} E_{2n} \frac{t^{2n}}{(2n)!}$$

$$sec. t = \frac{1}{\cos t}$$

Part I, Ch 3b, 61-79

Part I, Ch 3b, complements

$$\frac{1}{\cos t} = \sum_{n} \frac{t^{2n}}{(2n)!}$$

$$sec. t = \frac{1}{\cos t}$$

numbers

Secont (Euler numbers) alternating permutations

Tenti

tangent num bers

51,2,16,272,7936, -- }

D. Andre (1880)

D. Foata "Thébrie géométrique des M.P. Schritzenberger polynômes Euleriens" (1970)

Euler

erit:
$$\alpha = 1$$
 $\eta = 2702765$
 $\theta = 1$ $\eta = 199360981$
 $\eta = 199360981$
 $\eta = 19391512145$
 $\eta = 19391512145$

Euler

$$tg x = \frac{2^{2}(2^{2}-1) \Re x}{1.2} + \frac{2^{4}(2^{4}-1) \Re x^{3}}{1.2.3.4} + \frac{2^{6}(2^{6}-1) \Re x^{5}}{1.2....6} + \frac{2^{8}(2^{8}-1) \Re x^{7}}{1.2....6} + &c.$$

$$\cot N = \frac{1}{N} - \frac{2^{9} \Re N}{1.2} - \frac{2^{4} \Re N^{3}}{1.2.3.4} - \frac{2^{6} \Re N^{5}}{1.2.3..6} - \frac{2^{8} \Re N^{7}}{1.2....8} - &c.$$

$$CAPUTVIII. 431$$
Si ergo hic introducantur numeri A, B, C, &c. §. 182. inventi, erit: tang $N = \frac{2AN}{1.2} + \frac{2^{12}BN^{5}}{1.2.3.4} + \frac{2^{5}CN^{5}}{1.2...6} + \frac{2^{7}DM^{7}}{1.2...8} + &c.$

Laplace

$$\int_{0}^{\infty} e^{-u} \tan(ut) du =$$

$$\int_{0}^{\infty} e^{-u} \tan(ut) du = \frac{1}{1 - \frac{1 \times 2 \cdot t^{2}}{1 - \frac{2 \times 3}{1 - \frac{2 \times 4}{1 - \frac{2}{1 - \frac{2}{1$$

$$\int_{0}^{\infty} e^{-u} \frac{1}{\cos(ut) du} =$$

Bernoulli numbers

Genocchi numbers
$$G_{2n} = 2(2-1) B_{2n}$$
Bernoulli

Gen {1,1,3,17,155, 2073,...}

Angelo Genocchi 1817 - 1889

Hine igitur calculo instituto reperietur:

$$A = I$$
 $B = I$
 $C = 3$
 $D = 17$
 $E = 155 = 5.31$
 $F = 2073 = 691.3$
 $G = 38227 = 7.5461 = 7.5461$

$$H = 929569 = 3617.257$$

 $I = 28820619 = 43867.9.73$

&c. -

Genocchi numbers.

$$G_{2n} = 2(2-1) B_{2n}$$
Bernoulli

our Master

Marcel Paul Schützenberger

1920 - 1996

André permutations,

non-commutative differential equations

Genocchi numbers

$$\sum_{n\geqslant 0} G_{2n+2} t^{2n} =$$

$$\frac{1}{1 - 4 \times 1 t^{2}}$$

$$\frac{1 - 4 \times 2 t^{2}}{1 - 2 \times 2 t^{2}}$$

$$\frac{1 - 2 \times 2 t^{2}}{1 - 2 \times 3 t^{2}}$$

$$\frac{1 - 4 \times 1 t^{2}}{1 - 2 \times 3 t^{2}}$$

$$\frac{1 - 4 \times 1 t^{2}}{1 - 2 \times 3 t^{2}}$$

associated Laguerre history

« Alternative pistols » D. Dumont, X.V. 1978

Complements

elliptic functions

Jacobi elliptic functions

$$\begin{cases} 3n' = cn \cdot dn, & sn(0) = 0 \\ cn' = -dn \cdot sn, & cn(0) = 1 \\ dn' = -k^2 sn \cdot cn, & dn(0) = 1 \end{cases}$$

Dumont X.V., Flagilit 80% 3 different combinatorial interpretations

$$\int_{0}^{\infty} e^{-u} cn(ut) du =$$

$$\frac{1}{1-1^{2}t^{2}}$$

$$\frac{1-2^{2}d^{2}t^{2}}{1-3^{2}t^{2}}$$

$$\frac{1-3^{2}t^{2}}{1-4^{2}d^{2}t^{2}}$$

THE FERMAT CUBIC, ELLIPTIC FUNCTIONS, CONTINUED FRACTIONS, AND A COMBINATORIAL EXCURSION

ERIC VAN FOSSEN CONRAD AND PHILIPPE FLAJOLET

Kindly dedicated to Gérard · · · Xavier Viennot on the occasion of his sixtieth birthday.

ABSTRACT. Elliptic functions considered by Dixon in the nineteenth century and related to Fermat's cubic, $x^3 + y^3 = 1$, lead to a new set of continued fraction expansions with sextic numerators and cubic denominators. The functions and the fractions are pregnant with interesting combinatorics, including a special Pólya urn, a continuous-time branching process of the Yule type, as well as permutations satisfying various constraints that involve either parity of levels of elements or a repetitive pattern of order three. The combinatorial models are related to but different from models of elliptic functions earlier introduced by Viennot, Flajolet, Dumont, and Françon.

In 1978, Apéry announced an amazing discovery: " $\zeta(3) \equiv \sum 1/n^3$ is irrational". This represents a great piece of Eulerian mathematics of which van der Poorten has written a particularly vivid account in [59]. At the time of Apéry's was known about the arithmetic nature of the zeta values at odd in unnaturally his theorem triggered interest in a whole range of problem

recognized to relate to much "deep" mathematics [38, 51]. Apéry's orig proof crucially depends on a continued fraction representation of $\zeta(3)$.

(1)
$$\zeta(3) = \frac{6}{\varpi(0) - \frac{1^6}{\varpi(1) - \frac{2^6}{\varpi(2) - \frac{3^6}{\ddots}}}},$$

Lucelle (2005) Séminaire Lotharingien de Combinatoire 54th SLC

where $\varpi(n) = (2n+1)(17n(n+1)+5).$

$$\frac{2(3)}{\varpi(a)} = \frac{6}{\varpi(a) - \frac{16}{\varpi(a) - \frac{26}{\varpi(a) - \frac{36}{\varpi(a) - \frac$$

$$\Delta m(z) = Inv \int_{0}^{z} \frac{dt}{(1-t^{2})^{2/3}}$$

$$\begin{cases} \Delta m' = cm^{2} & \Delta m(0) = 0 \\ cm' = -\Delta m^{2} & cm(0) = 1 \end{cases}$$

$$\Delta m(z)^{3} + cm(z)^{3} = 1$$
Dixon (1890)

Convad (2002)
$$\int_{0}^{\infty} Am(u) e^{-u/x} du = \frac{x^{2}}{1 + b_{0}x^{3} - \frac{1.2^{2} \cdot 3^{2} \cdot 4 \times 6}{1 + b_{1}x^{3} - \frac{4.5^{2} \cdot 6^{2} \cdot 7 \times 6}{1 + b_{2}x^{3} - \dots}}$$

$$b_{n} = 2(3n+1)((3n+1)^{2}+1)$$

Polya urn model

$$y \rightarrow 0$$
 $z \rightarrow 00$

$$\Delta m(z) = z - 4\frac{2^4}{4!} - -160\frac{z^2}{2!} - 20800\frac{z^{10}}{10!} - \dots$$

$$cm(z) = z - 2\frac{z^3}{3!} - 40\frac{z^6}{6!} - 3680\frac{z^9}{9!} - \dots$$

Jacobian elliptic functions

SN, cn, dn

X.V. (1980) Jacobi permutations

Dumont (1979) Flajolet alternating

Schett generation

cycle structure

· class of permutations losed on parity 2 - repeated permutations (with J. Françon) - sn, on, dn (1989) Jacobian elliptic 3 - repeated (*) permutations -> -sm (-Z) continued fraction P.F. with R. Bacher (2010)

$$\sum_{n \ge 0} a_n z^n = \frac{1}{1+1z - \frac{3 \cdot 1^2 z^2}{1-1z + \frac{2^2 z^2}{1+3z + \frac{3 \cdot 3^2 z^2}{1-3z + \frac{4^2 z^2}{1-3z + \frac{4^2$$

Weierstraß function & lattice sum

A Happy New Year 2010

Consider the integer sequence (p_n) , which starts as

 $2, 144, 96768, 268240896, 2111592333312, 37975288540299264, \dots$

and is defined by sums over the square lattice,

$$p_n := (-1)^{n+1} (4n+3)! \left[\int_0^1 \frac{dt}{\sqrt{1-t^4}} \right]^{-4n-4} \sum_{a,b=-\infty}^{+\infty} \left[(2a+1) + (2b+1)\sqrt{-1} \right]^{-4n-4}.$$

The following continued fraction expansion holds:

$$\sum_{n=0}^{\infty} p_n z^n = \frac{2}{1 - 2 \cdot 2^2 (2^2 + 5) z - \frac{2 \cdot 3^2 \cdot 4^2 \cdot 5^2 \cdot 6 z^2}{1 - 2 \cdot 6^2 (6^2 + 5) z - \frac{6 \cdot 7^2 \cdot 8^2 \cdot 9^2 \cdot 10 z^2}{1 - 2 \cdot 10^2 (10^2 + 5) z - \frac{1}{1 - 2}}}.$$

[A follow up to R. Bacher and P. Flajolet, The Ramanujan Journal, 2010, in press.]

Philippe Flajolet

ॐ भूभुवः स्वः तत्सिवतुर्वरेण्यं। भर्गो देवस्य धीमहि, धीयो यो तः प्रचोदयात्॥

