Course IMSc, Chennai, India
January-March 2018

The cellular ansatz: bijective combinatorics and quadratic algebra

Xavier Viennot
CNRS, LaBRI, Bordeaux
www.viennot.org

mirror website
www.imsc.res.in/~viennot

Chapter 3 Tableaux for the PASEP quadratic algebra

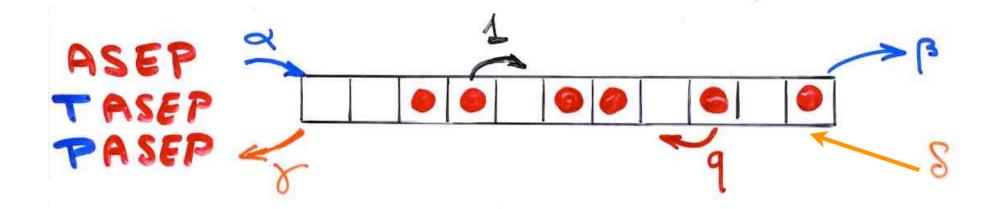
Ch3b

IMSc, Chennai February 15, 2018 Xavier Viennot
CNRS, LaBRI, Bordeaux
www.viennot.org

mirror website
www.imsc.res.in/~viennot

From Ch 3a

toy model in the phypics of dynamical systems for from equilibrium



computation of the "stationary probabilities"

seminal paper

"matrix ansatz"

Perrida, Evans, Hakim, Pasquier (1993)

D, E matrices

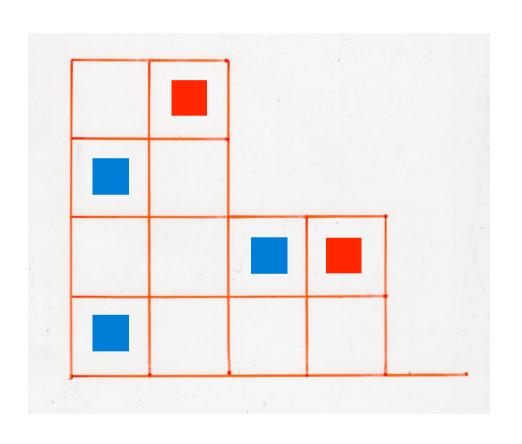
(may be 00)

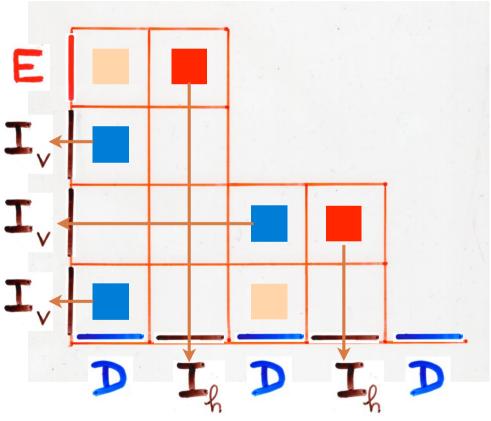
colum vector V

1

$$DE = qED + E + D$$

Then

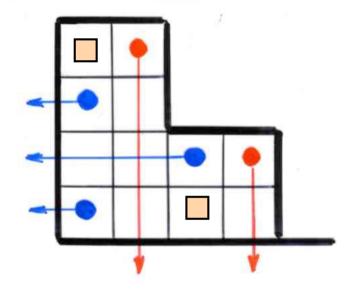




DE = qED+E+D

In the PASEP algebra

any word W(E,D) can be uniquely written $W(E,D) = \sum_{T} q^{k(T)} E^{i(T)} D^{j(T)}$ alternative tableaux profile tw

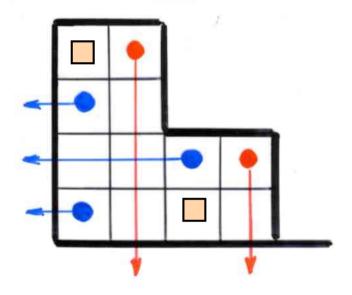


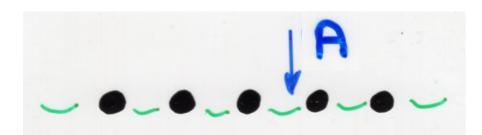
corollary. The stationary probability essociated to the state $T = (T_1, ..., T_n)$ proba_ (9; x, s) = 1 = 1 = 1 (3)(T) alternative talleaux profile T k(T) = nb of cells

i(T) = nb of rows without

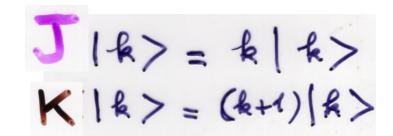
j(T) = nb of cells

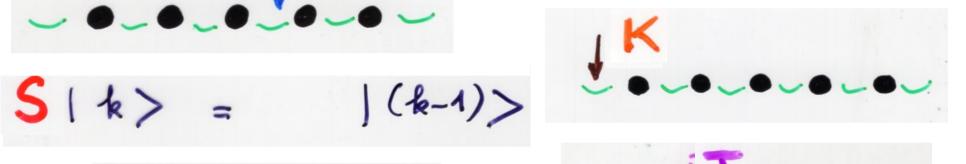
clumns without





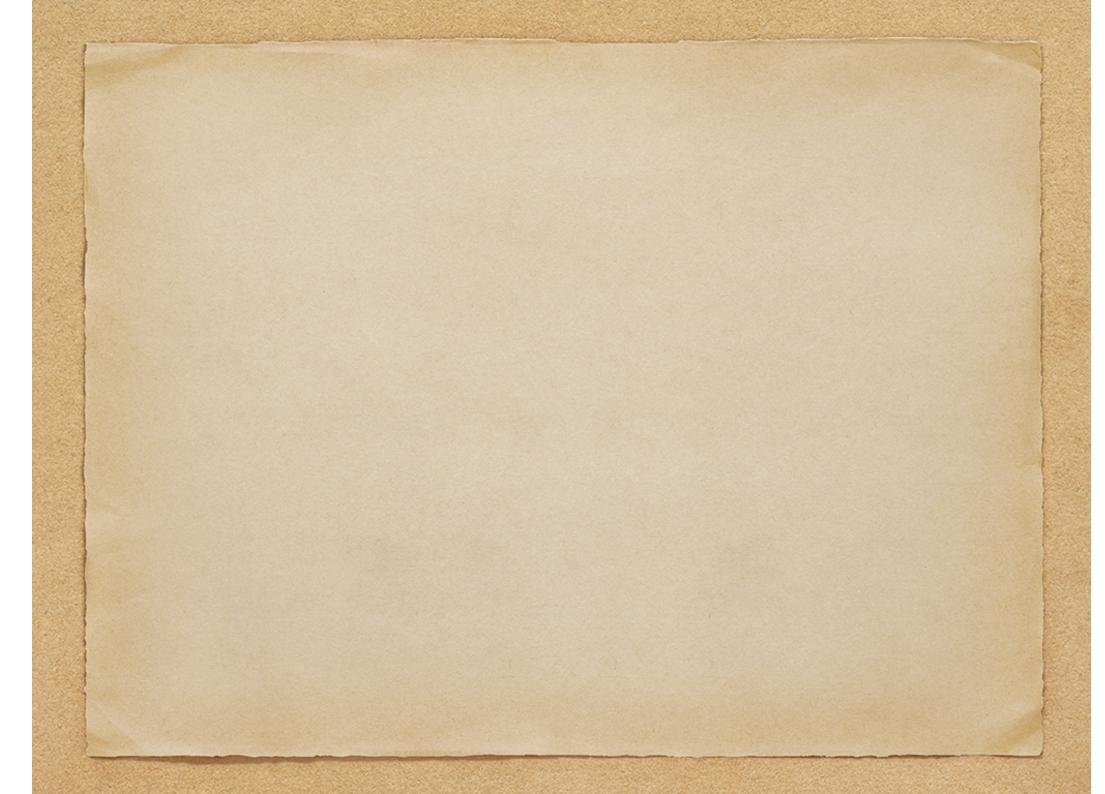
$$\begin{cases}
\mathcal{D} = A + K \\
E = S + J
\end{cases}$$

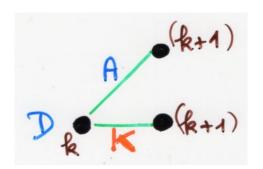


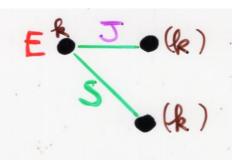


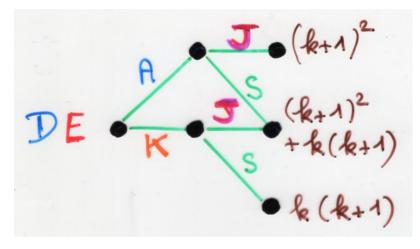


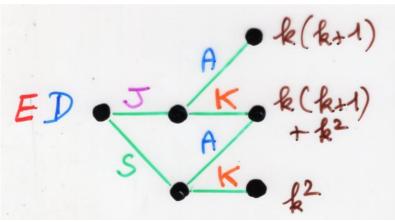
product from left to night

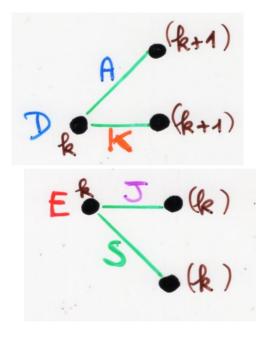


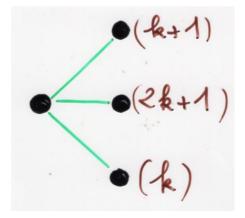












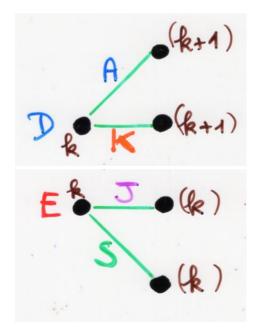
$$< k \mid A = (k+1) < (k+1) \mid$$

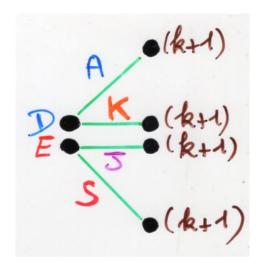
 $< k \mid K = (k+1) < k \mid$
 $< k \mid J = (k+1) < k \mid$
 $< k \mid J = (k+1) < (k-1) \mid$

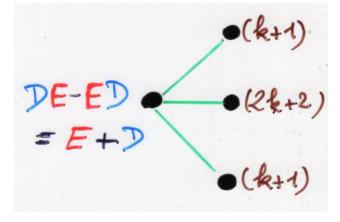
Corrections after the video

$$D = A + K$$

$$E = S + J$$







notations. A operator V -> V (linear map)

V \in V \

V \ A = A(V)

B lasis of V, V \in B

V \ V >= coeff. of V on V \in B

combinatorial representation of the operators E and D

V vector space generated by B basis

B alternating words two betters 70,03

(no occurrence of oo or ...)

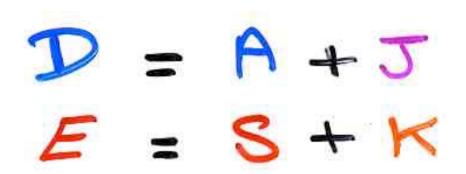
4 operators A, S, J, K

4 operators A, S, J, K, u &B , v ofteined by: letter o
of u

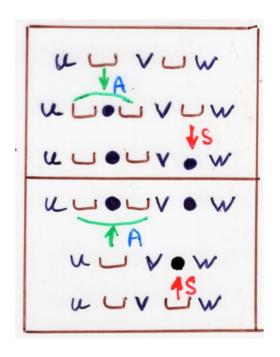
<u | S = \(\sum_{\text{V}} \) V obtained by :

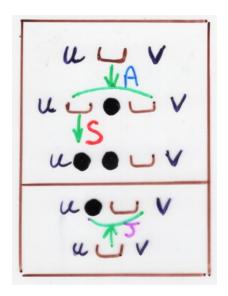
O→• o ofu <u1] = = = V V, $0 \rightarrow 00$ (and $00 \rightarrow 0$) <u | K = \(\subseteq \text{v} \) (and •• →•) ofu

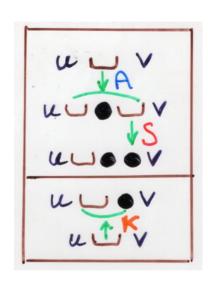
$$\bigcirc \bullet \bigcirc \bullet | S = \bullet \bigcirc \bullet + \bigcirc \bullet$$

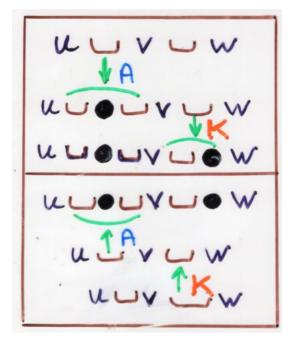


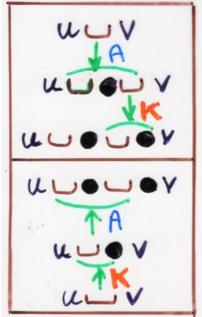
claim:

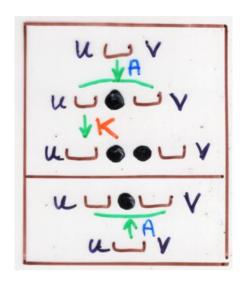


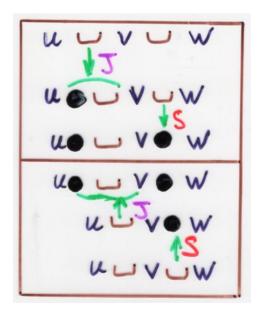


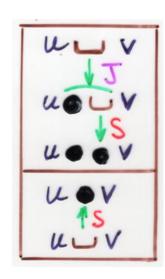


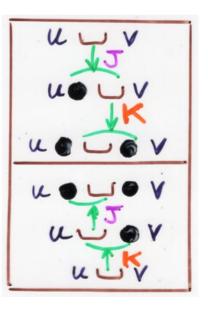












AS = SA + T + K
AK = KA + A

JK = KJ

$$\mathcal{D} = A + J$$

$$\mathcal{E} = S + K$$

$$\mathcal{D} = A + \mathcal{J}$$

$$\mathcal{E} = S + \mathcal{K}$$

claim:

Laguerre histories

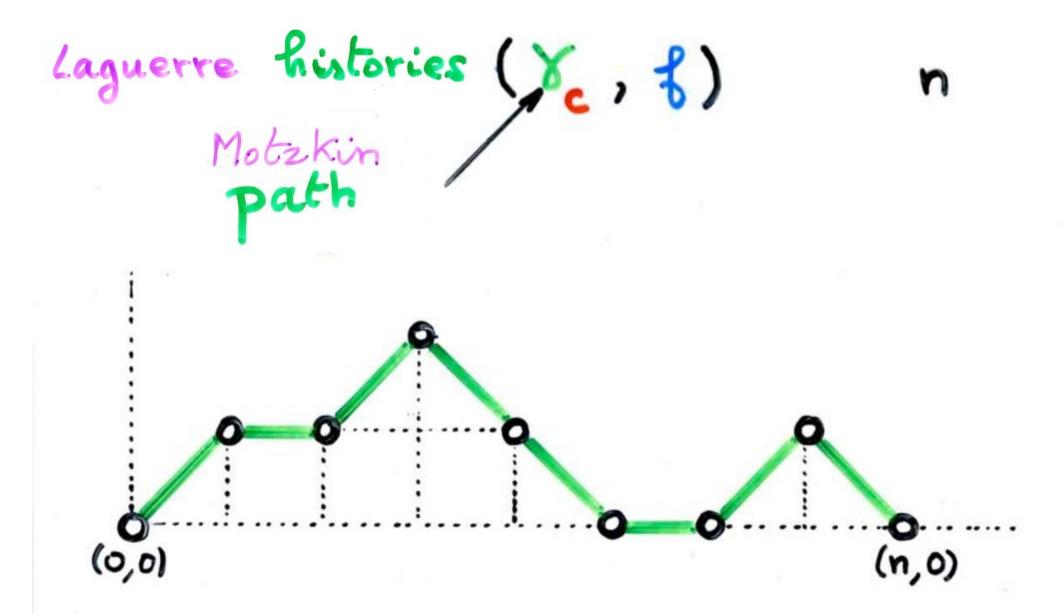
definition

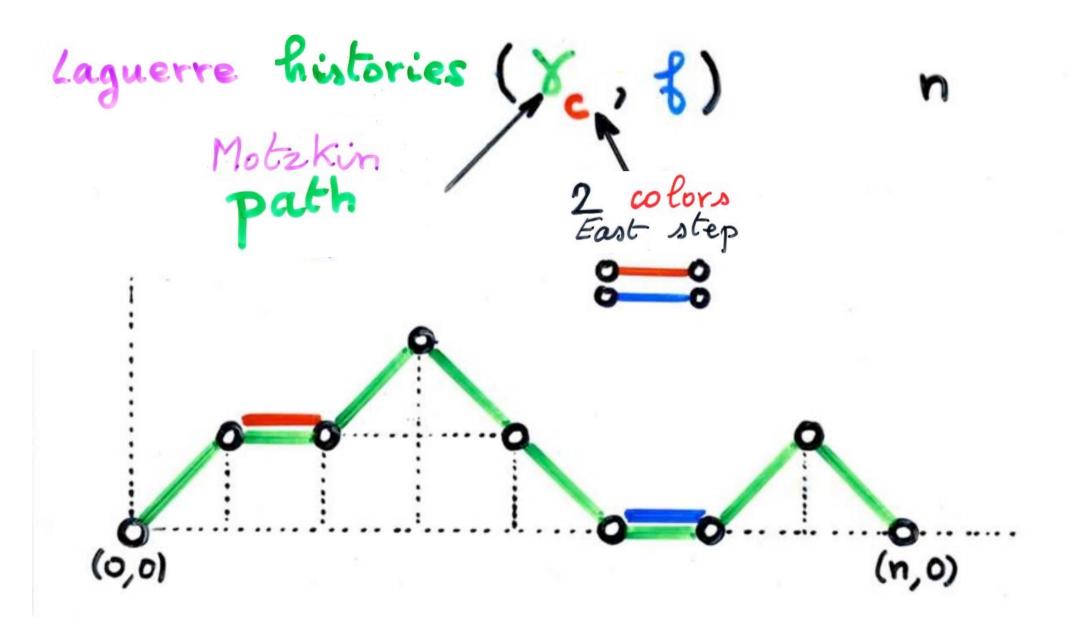
Laguerre histories (&, f)

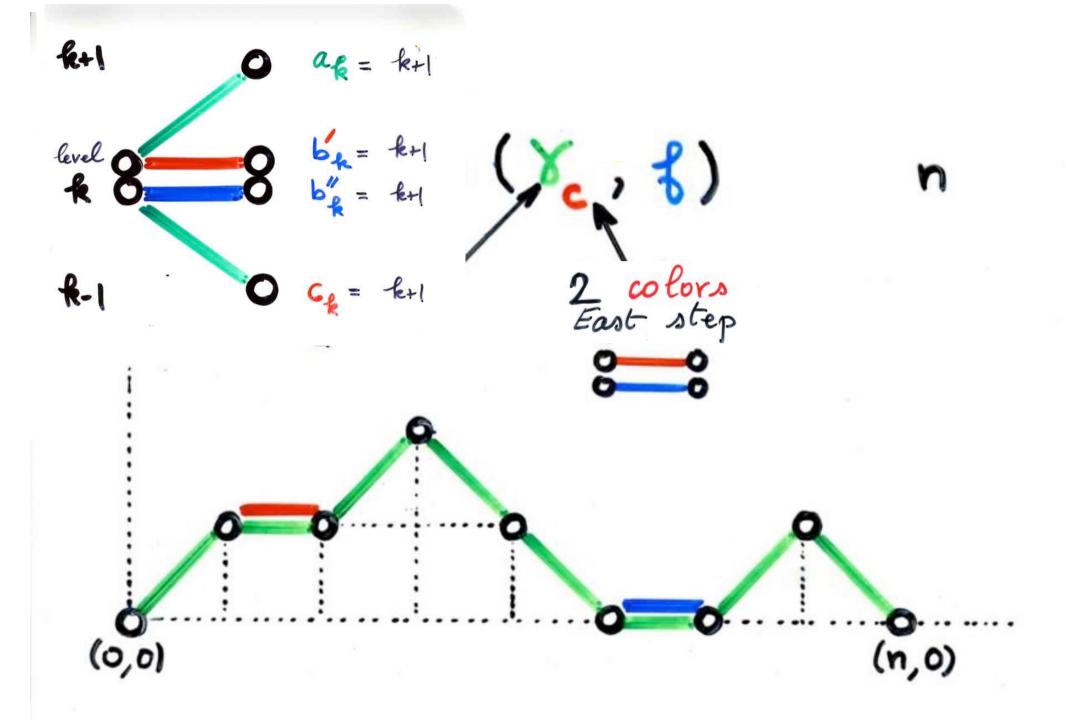
٦

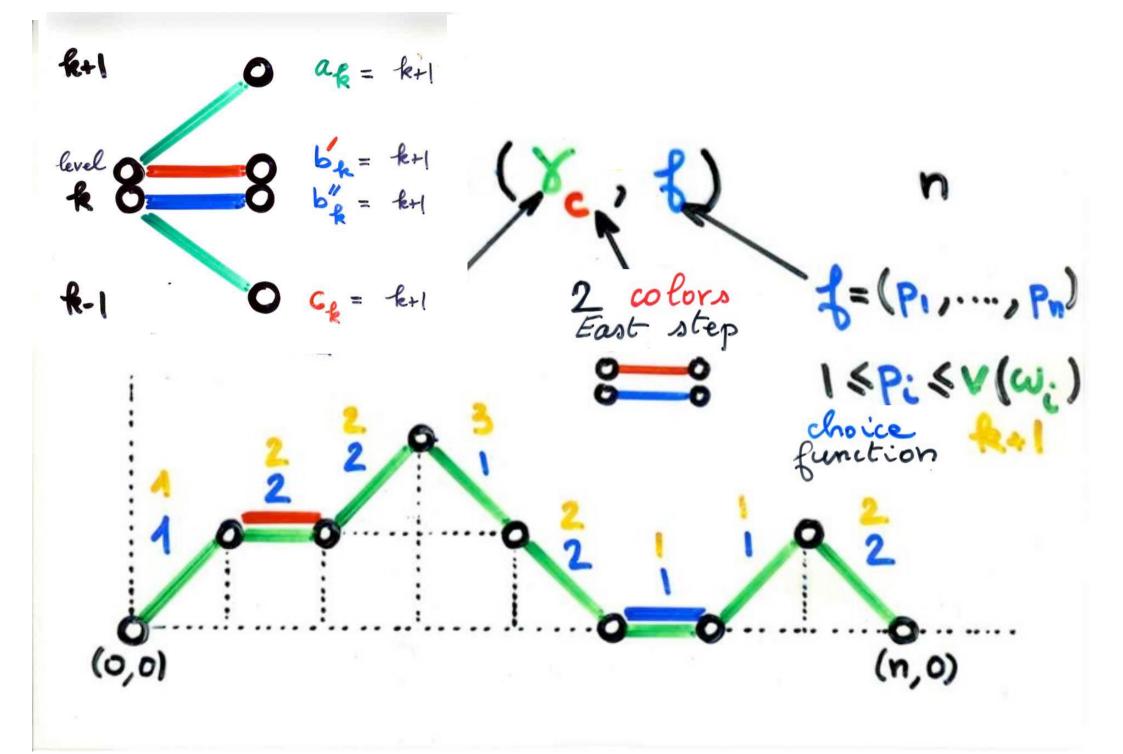
•

4.00









(n+1)! =
$$\sum_{|\omega|=n}^{|\omega|=n}$$

2-colored
Motzkin
$$\begin{cases} b'_{k} = k+1 \\ b''_{k} = k+1 \end{cases}$$

$$a_{k} = k+1$$

Bijection

Laguerre

(a)(propp) -> permutations (n+1)!

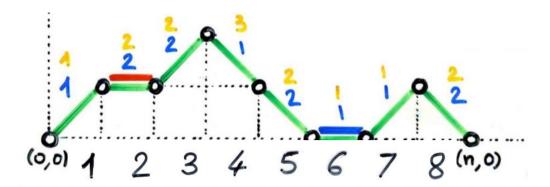
bijection

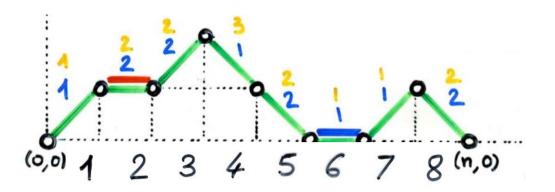
Laguerre histories — permutations

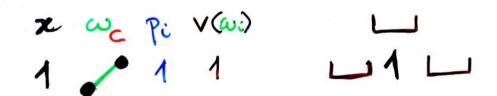
description with words

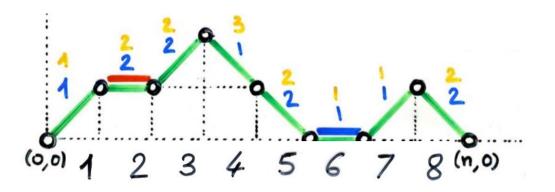
The FV bijection

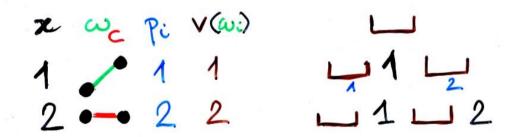
(Françon-XV 1978)

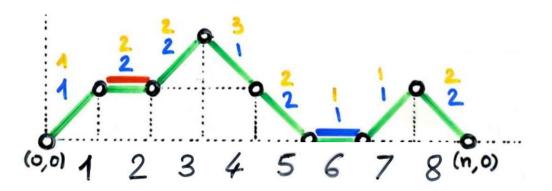


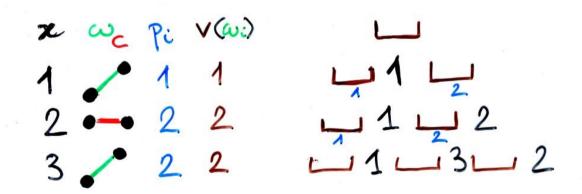


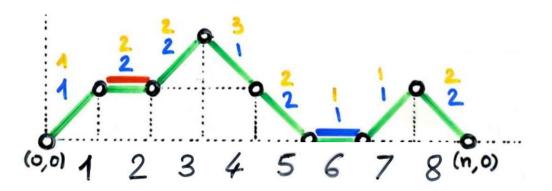


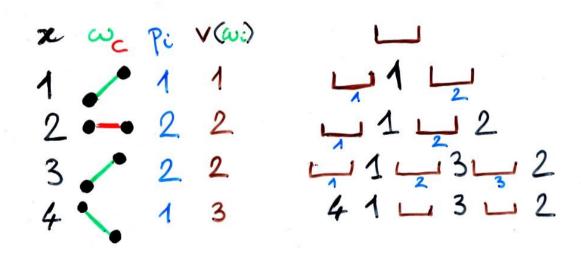


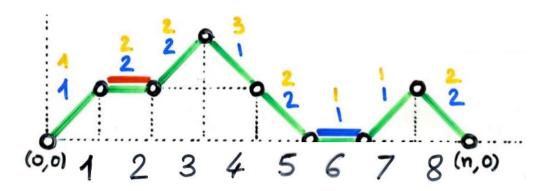


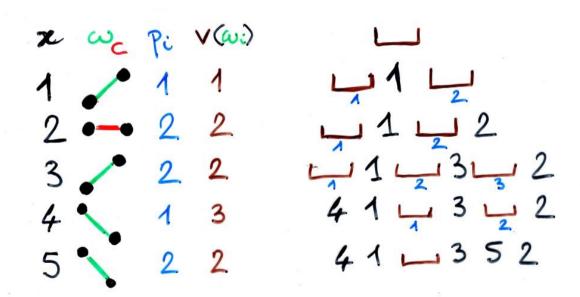


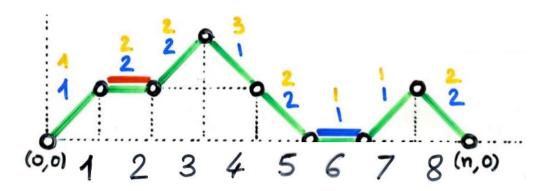


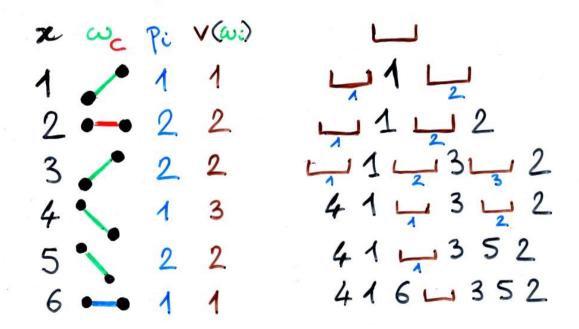


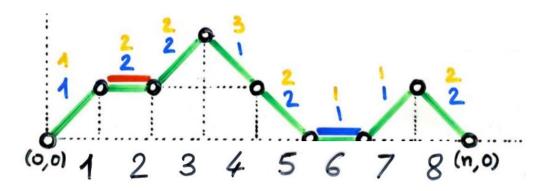


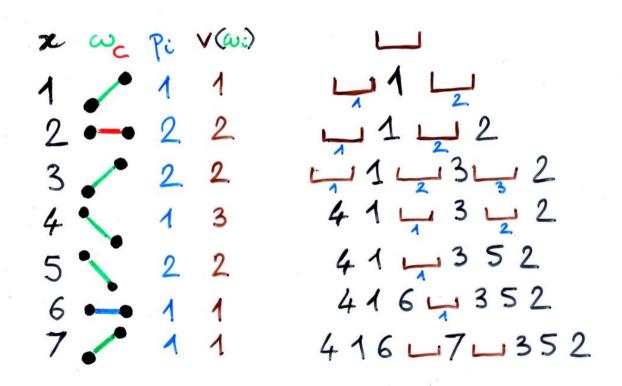


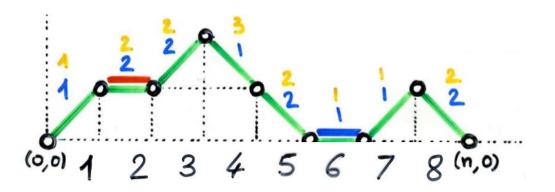


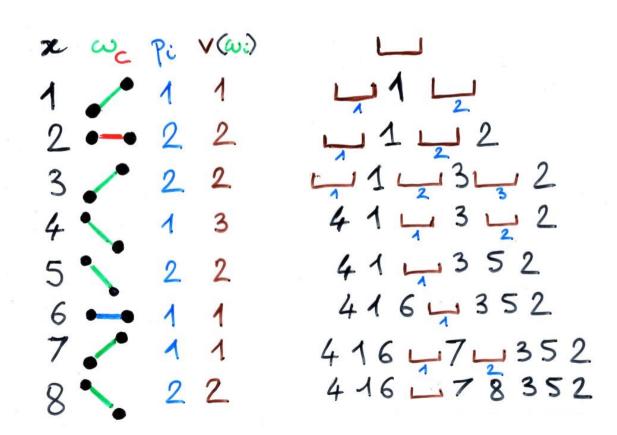


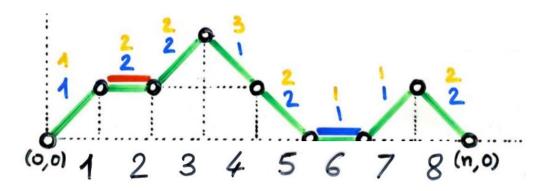






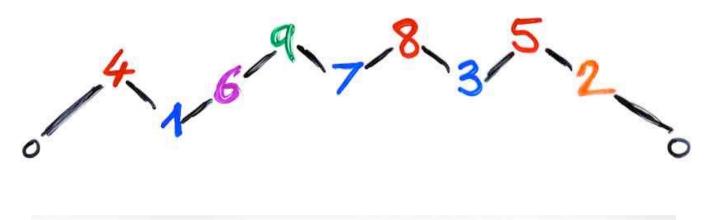


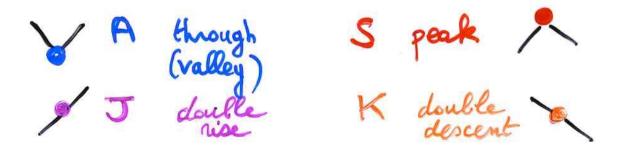


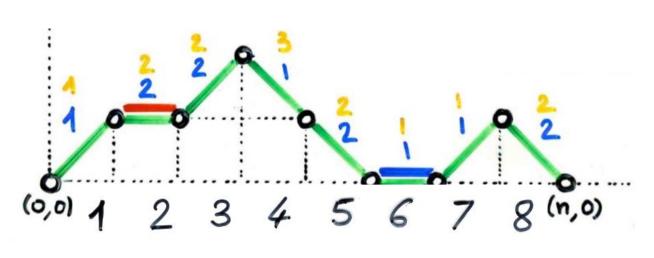


reciprocal bijection

permutations — Laguerre histories







= 4 1 6 - 9 - 7 - 8 - 3 - 5 - 2

Peaks 4, 5, 8,9

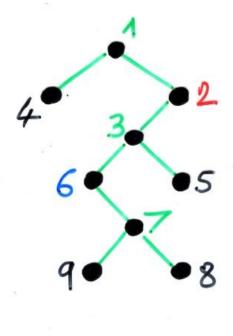
Valleys 137

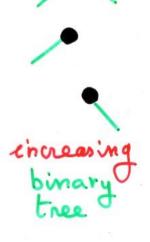
Doublet 2

Double rise 6

permutation

path

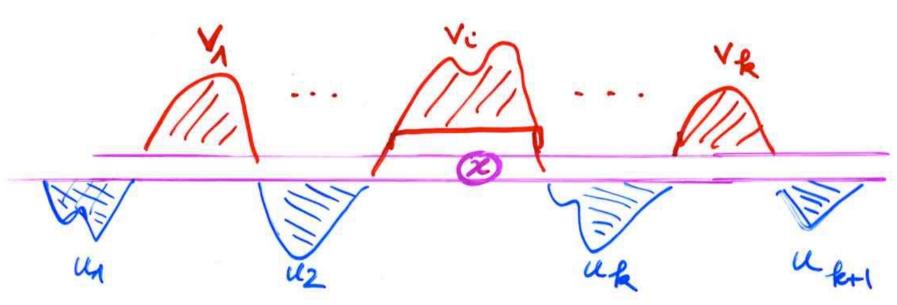




$$Def-\sigma \in S_n$$
, $x \in [1,n]$
 $x-decomposition$

- $\int_{0}^{\infty} = u_{1} v_{1} \dots u_{k} v_{k} u_{k+1}$ letters $(u_{i}) < x$ letters $(v_{i}) \ge x$ words $v_{1}, u_{2}, \dots, u_{k}, v_{k}$ non empty

$$ex$$
. $\sigma = 416978352$, $z = 3$



reciprocal bijection

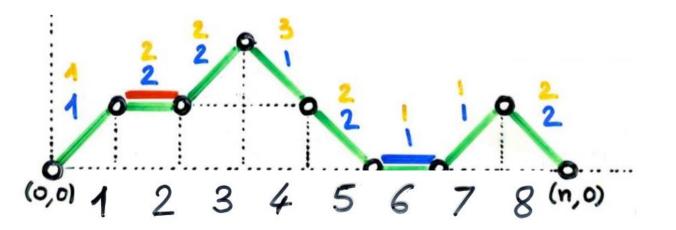
$$\omega_{c} = \omega_{1}...\omega_{n}$$

$$\omega_{c} = \omega_{1}...\omega_{n}$$

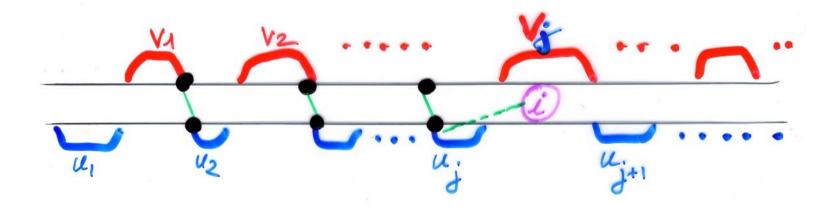
$$\omega_{i} \text{ if } i \text{ valley peak } i \text{ double rise } i \text{ double descent } i \text{ double descent } i \text{ of } i \text{ the } i \text{ - decomposition of } i \text{ of } i \text{ double descent } i \text{ double } i \text{$$

example

$$ex. \quad \sigma = 416978352, \quad z = 3$$



Lemma $P_i = j$ is also defined by: j = 1 + number of triples (a, b, i)having the pattern (31-2), that is $a = \tau(k)$, $b = \tau(k+1)$, $i = \tau(l)$ with k < k+1 < l and b < i < a

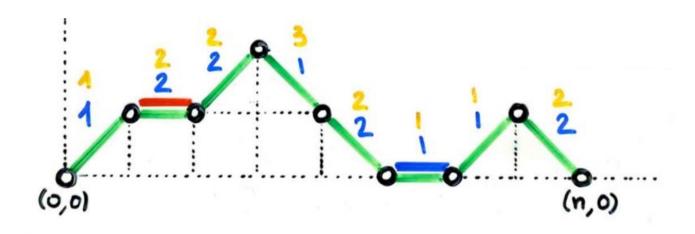


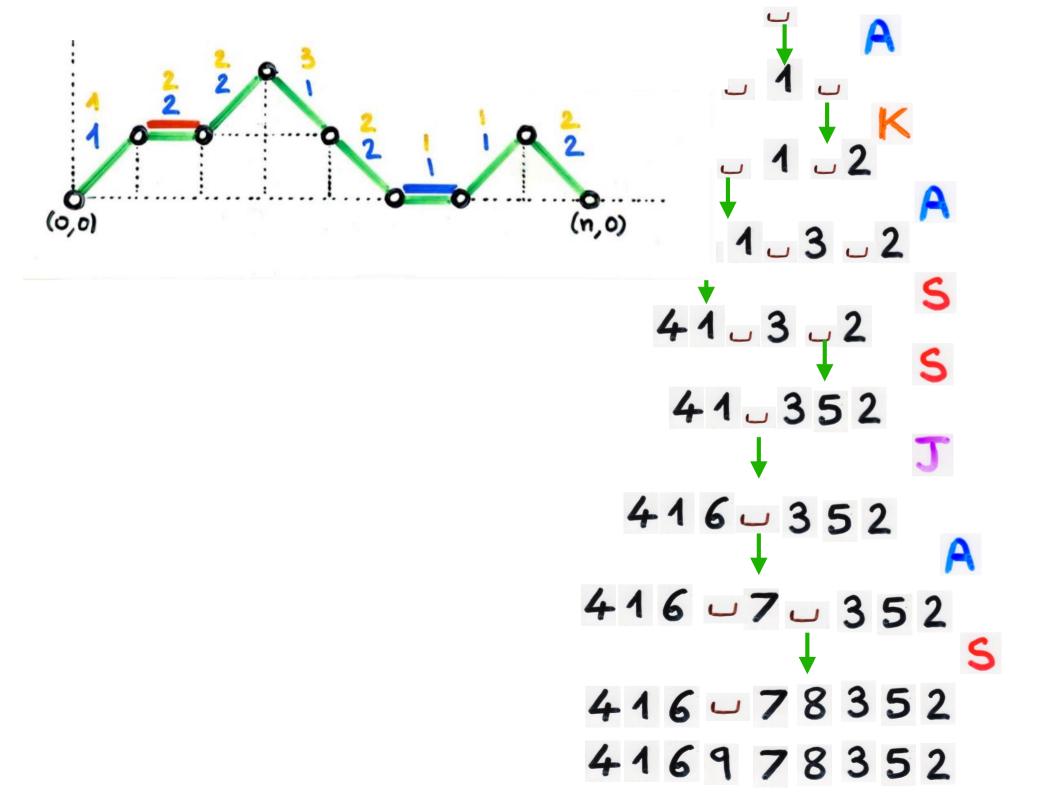
Laguerre histories and orthogonal polynomials

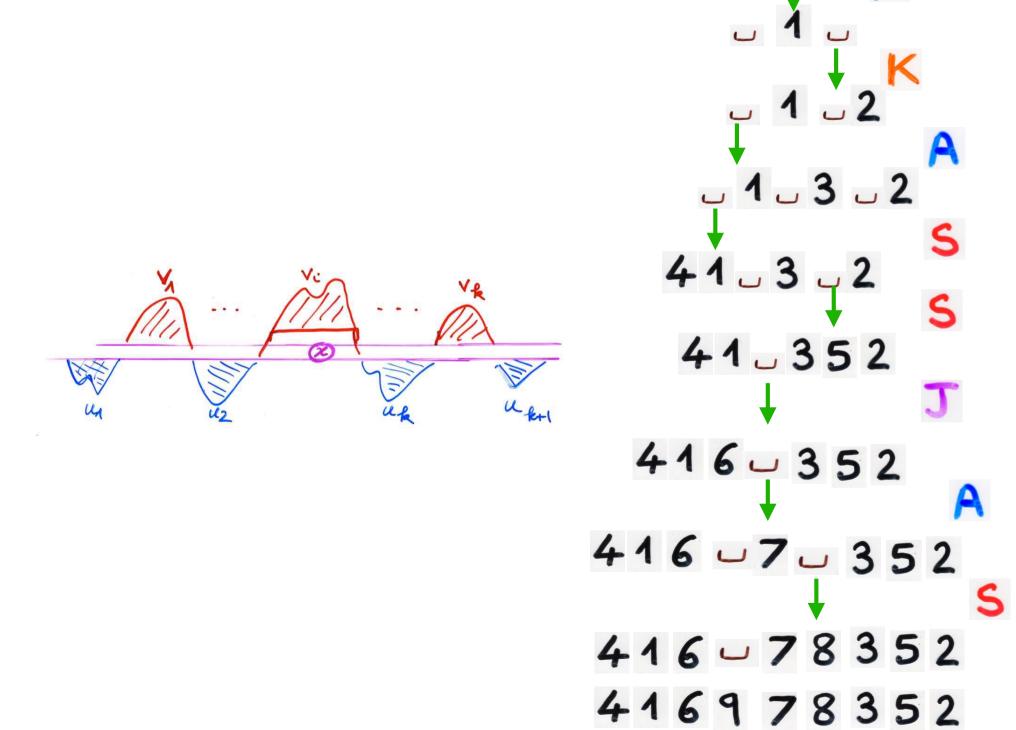
(abstract") Data	Possibility functions			Number of Histories.	
structures	ak	94	34	th m	
Dictionary.	k+1	2 k +	k	n! Termutations	
Linear	Rel	0	*	Ean alternating permutations	
Priority	单	0	ı	1.3(2n-1) involutions with no fixed pts:	
Symbol	K +1	k	1	B _n ⁽²⁾ Partitions	
Stack	ļ	0	ı	Cn= 1 (2n) Catalan nb.	

(abstract") Data	Possibility functions			Mumber of Histories.	Orthogonal
structures	ak	94	36	3	Polynomials
Dictionary.	k+!	2 k +	k	n! Termutations	Laguerre
Linear	Rai	0	*	Ezn alternating permutations	Meixner
Priority	feet	0	ı	1.3(2n-1) involutions will no fixed pts.	Hermite
Symbol	k +1	4	١	B _n ⁽²⁾ Partitions	Charlier
Stack	ļ	0	- 1	Cn= 1 (2n) Catalan nb.	Tchebycheff

The FV-bijection with operators







direct proof for the number of alternating tableaux of size n = (n+1)!

$$<0|(D+E)^{n}|00> +<0|(D+E)^{n}|00> +<0|(D+E)^{n}|00> = (n+1)!$$

from the bijection Laguerre histories -- permutations

Lemma - . V vector space

B base, vo & B · E, D operations V -> V such that DE = ED + E + D Vui, </1 = Dily> = 1 of size is equal to $\sum_{W \in \{E, D\}^*} \langle v_0 | W | v_0 \rangle$ |W| = n

$$\mathcal{D} = A + J$$

$$E = S + K$$

$$V_0 = \bullet \circ \circ$$

satisfies condition of lemma

(i)
$$\mathcal{D}E = E\mathcal{D} + E + \mathcal{D}$$

proof:

(ii)
$$DE = ED + E + D$$

(iii) $\forall v_i j \geqslant 0$ $\langle v_0 | E^{i}Di | v_0 \rangle = 1$
(iii) $\sum_{w \in AE,Dj} *$
 $|w| = 0$

Number of alternative tableaux of size n

$$<0|(D+E)^{n}|00> +<0|(D+E)^{n}|00> +<0|(D+E)^{n}|00> = (n+1)!$$

analogy with direct proofs
using operators U,D
representing the Weyl-algebra
(see Ch 2)

UD=DU+I

$$= \sum_{\lambda} (\xi_{\lambda})^{2}$$
partition
of γ

$$=\sum_{i\geqslant 0}c_{n,i}\langle \not D^i U^i | \not D\rangle$$

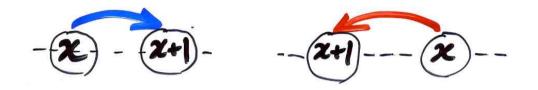
$$= n!$$

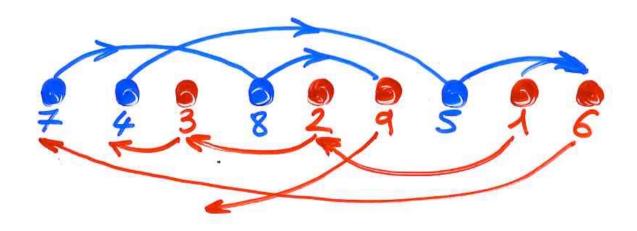
The "exchange-fusion" algorithm

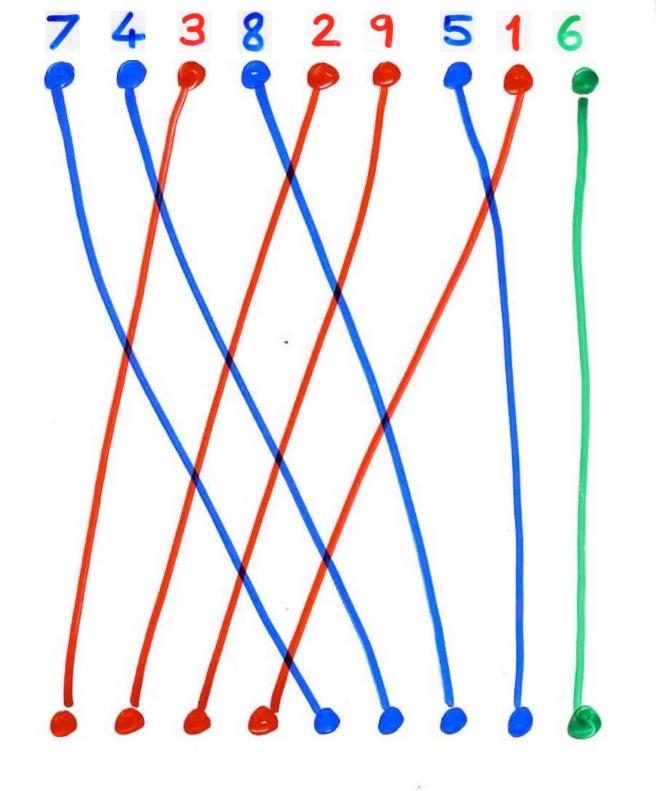
$$x$$
 advance in a permutation σ

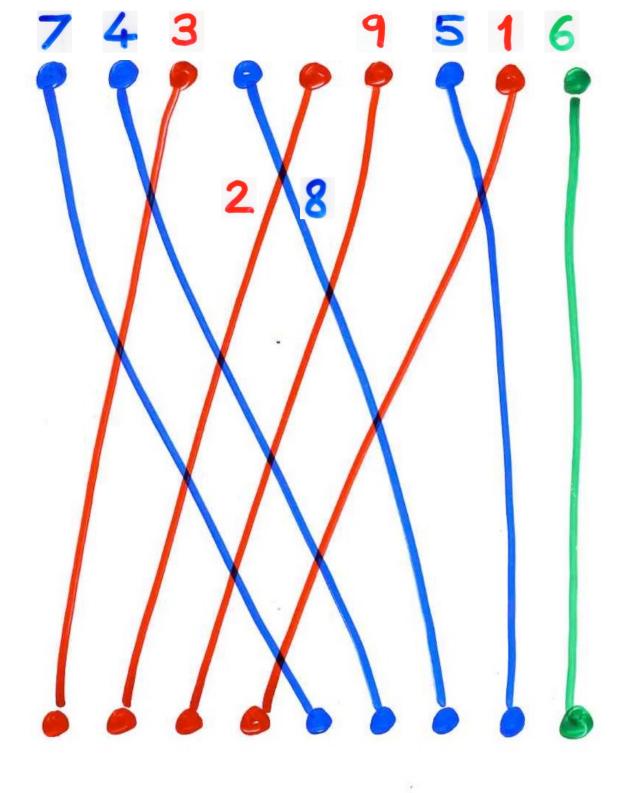
iff $x = \sigma(i)$, $x+1 = \sigma(j)$

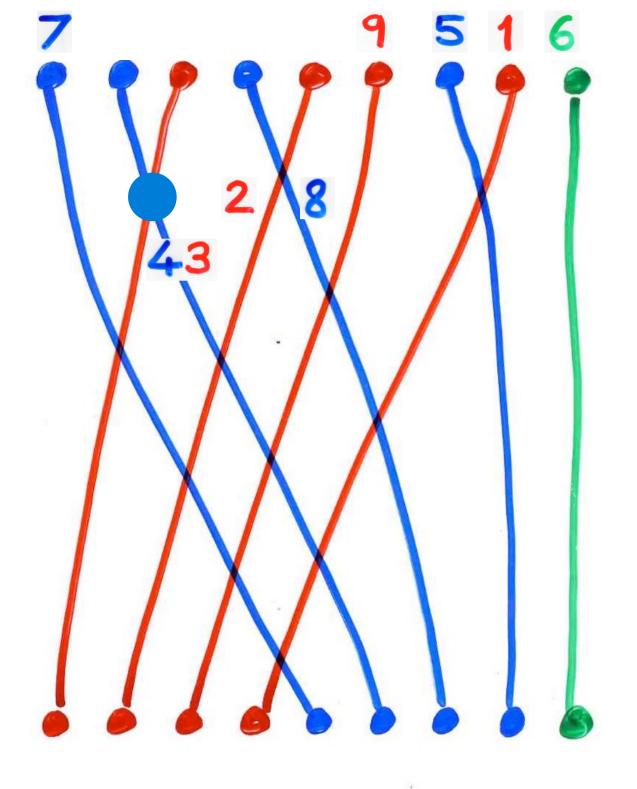
with $i < j$

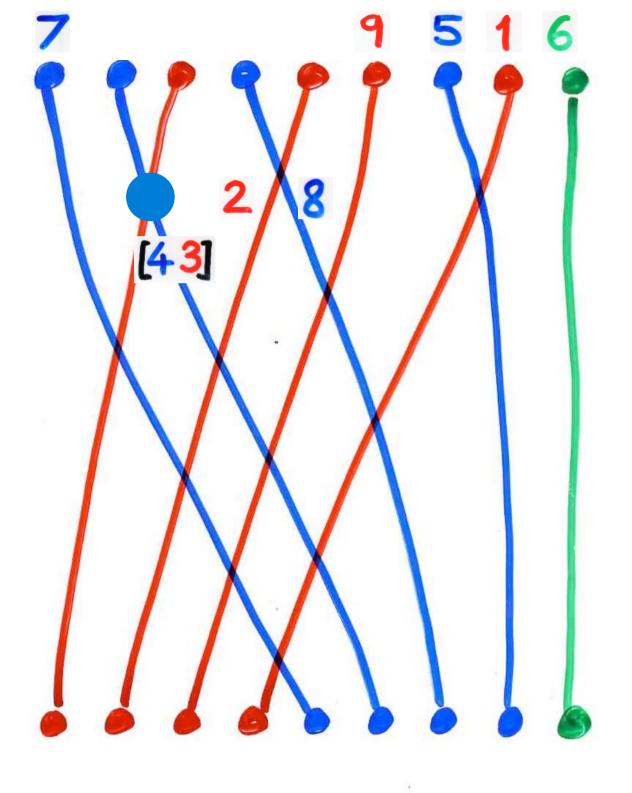


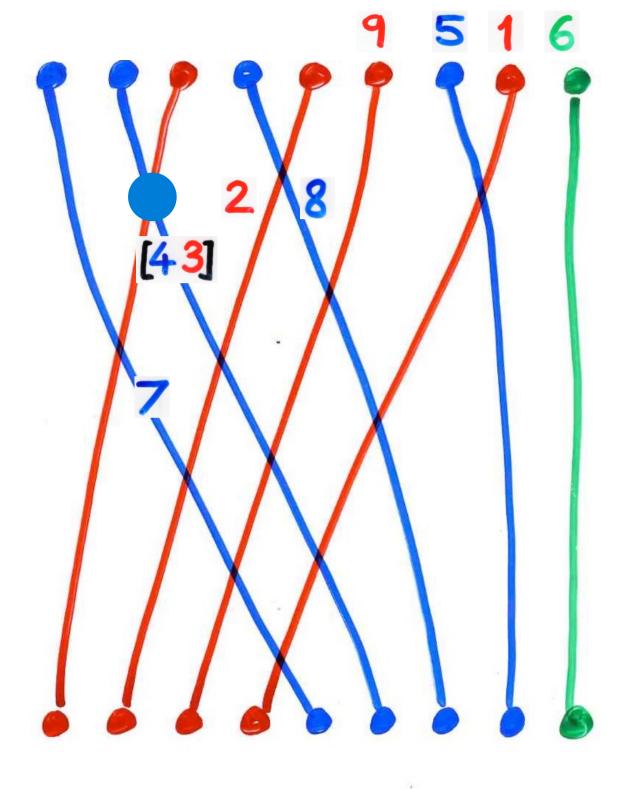


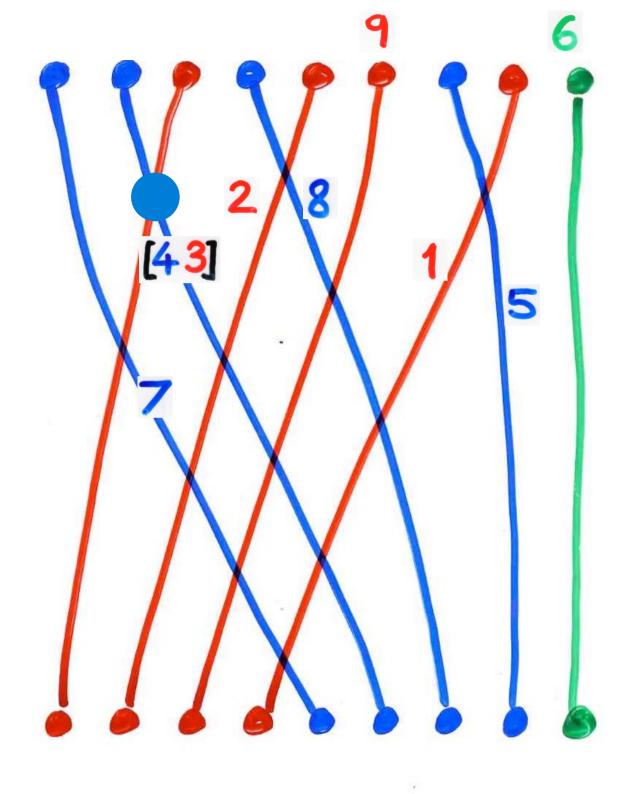


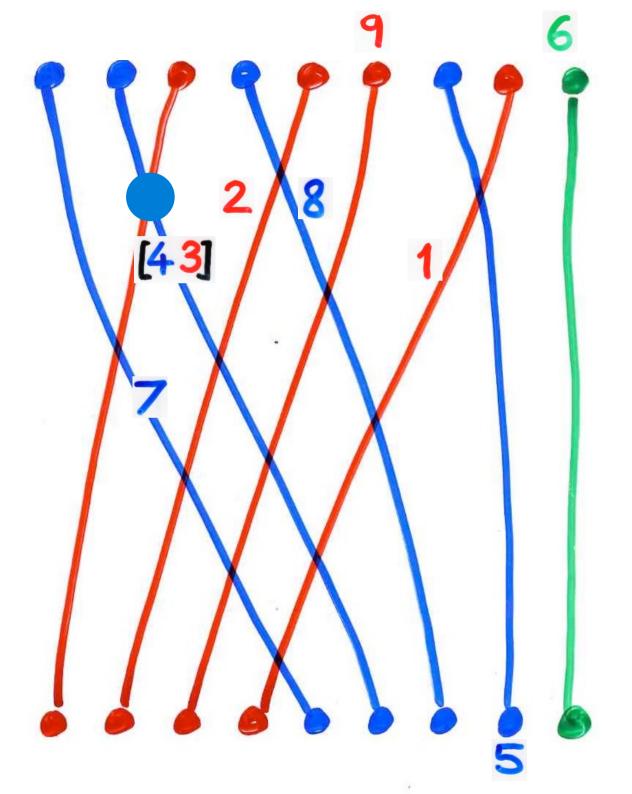


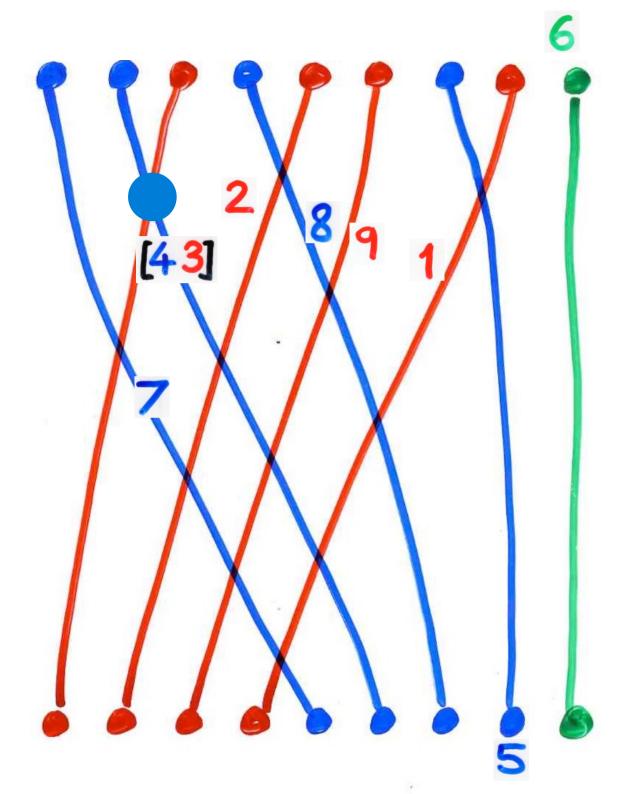


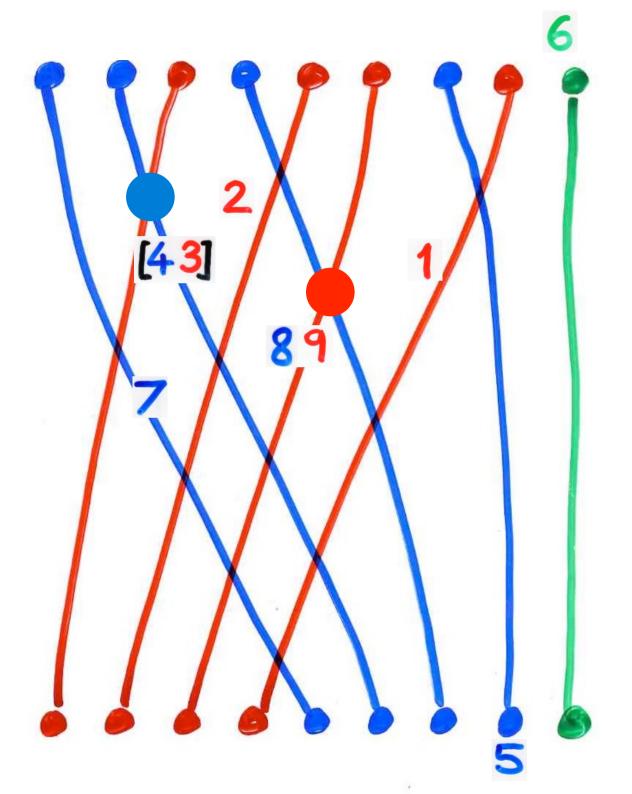


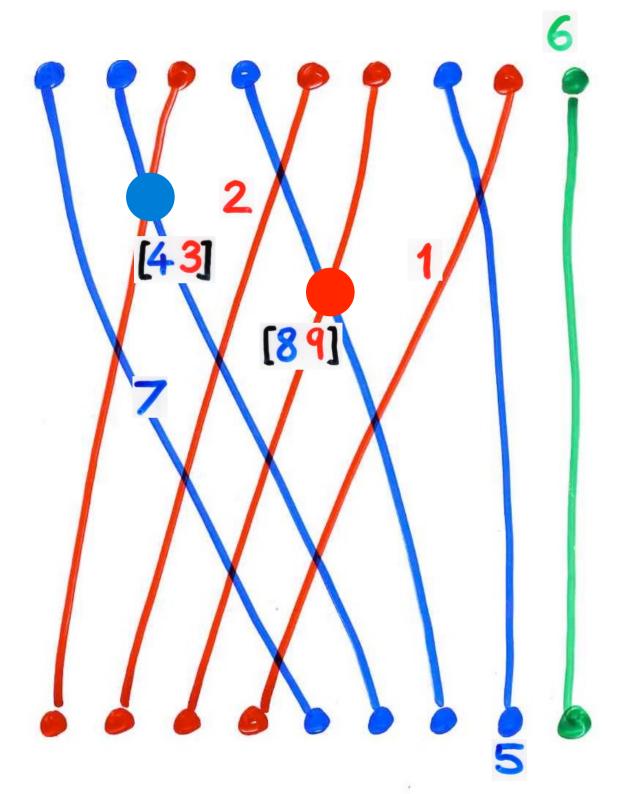


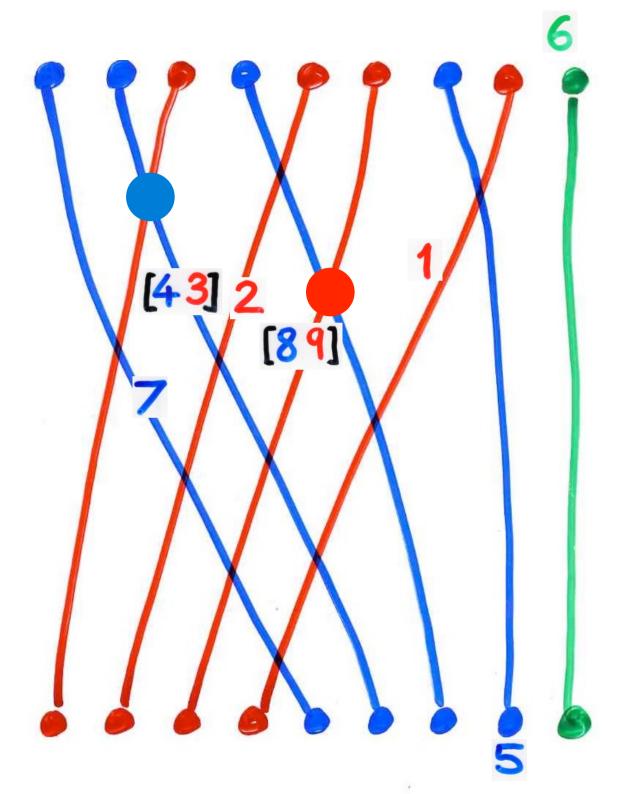


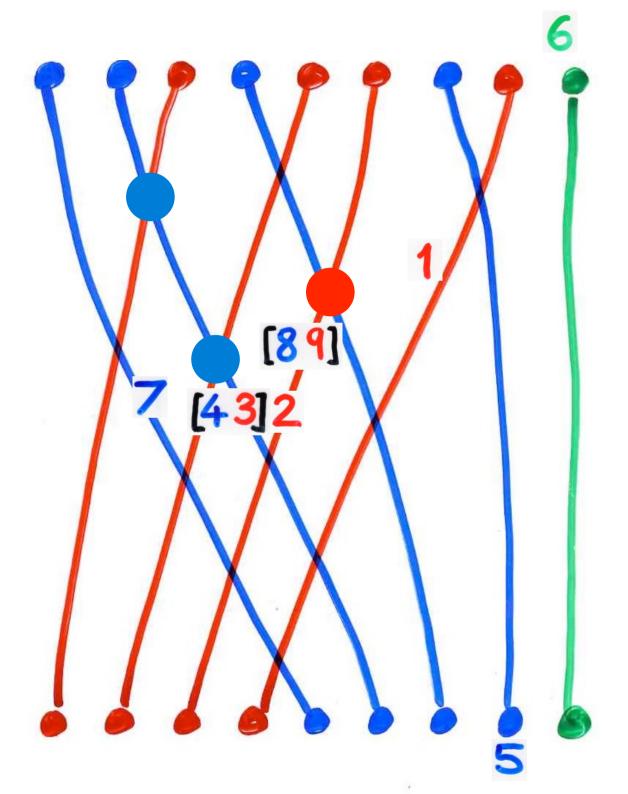


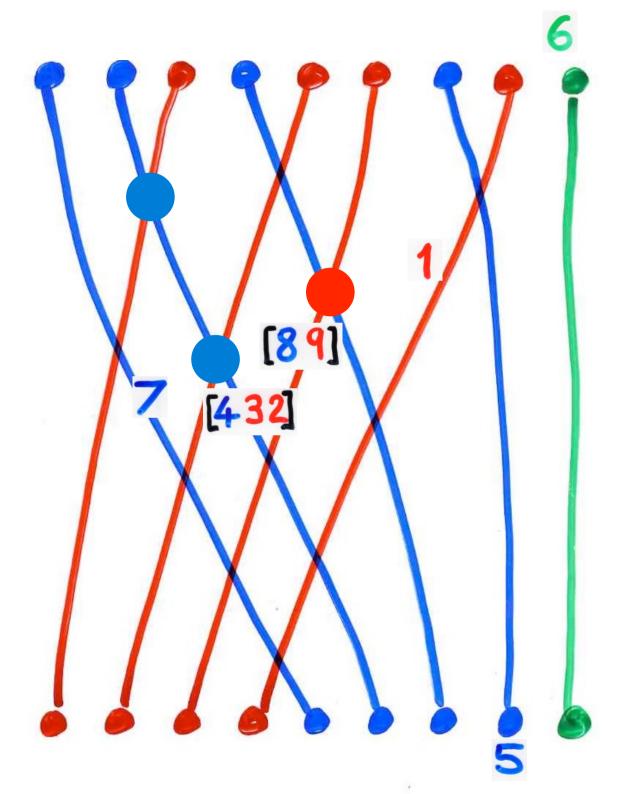


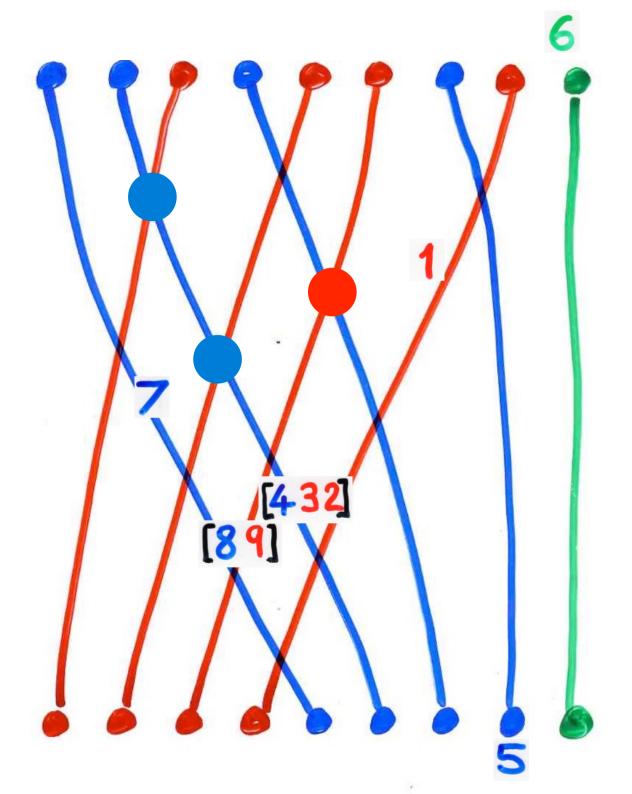


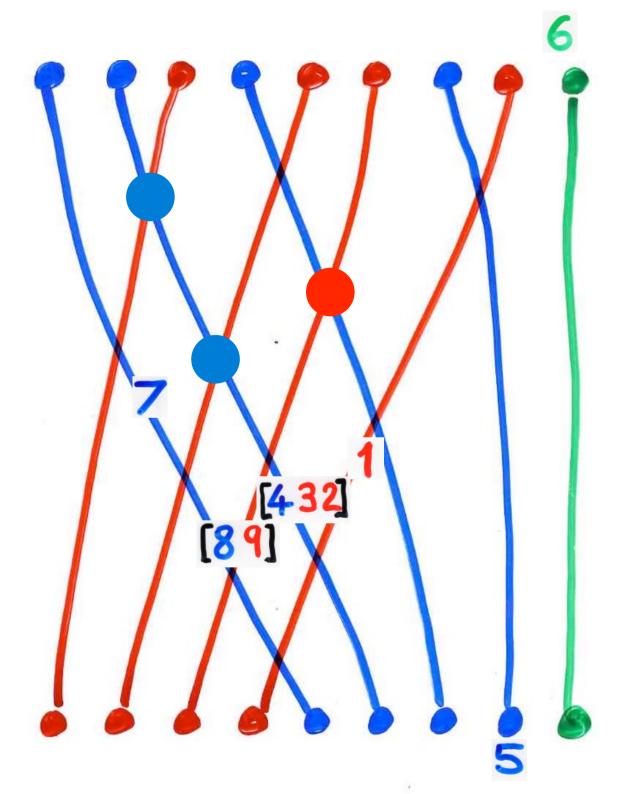


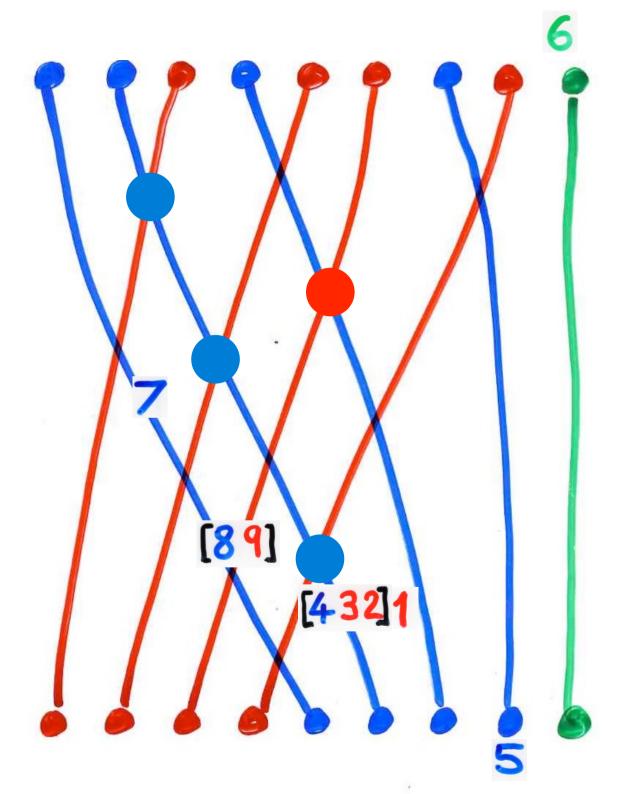


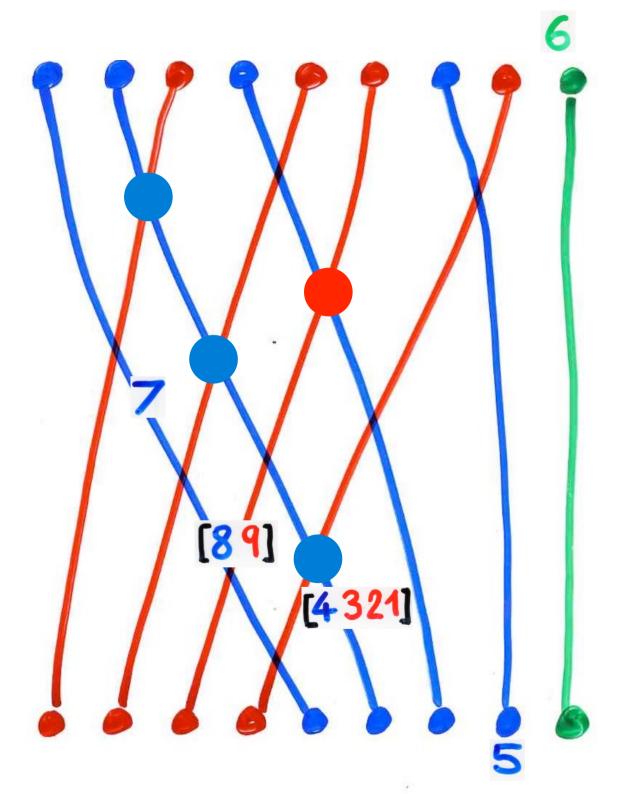


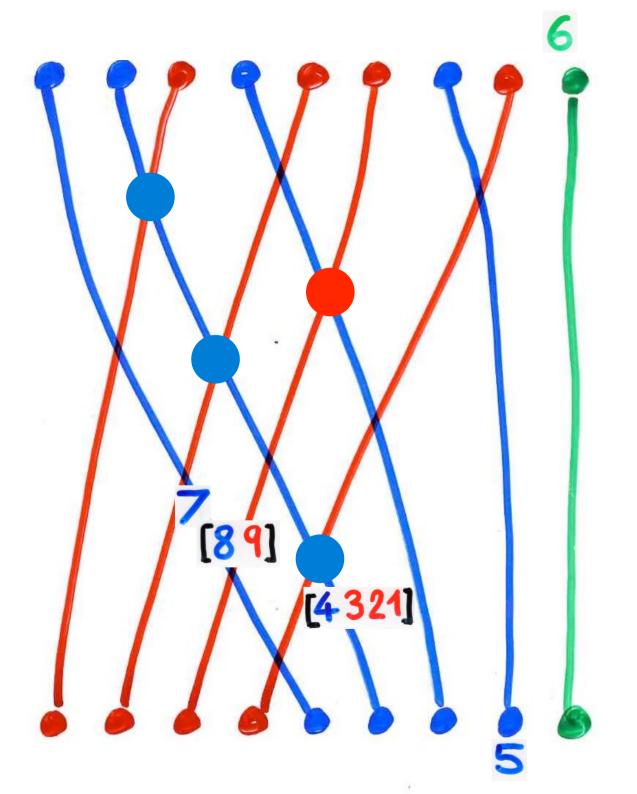


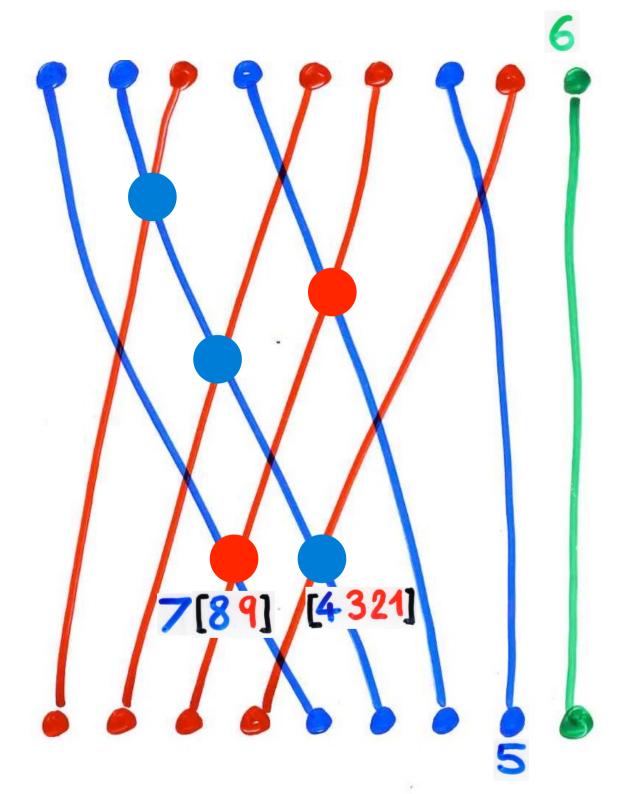


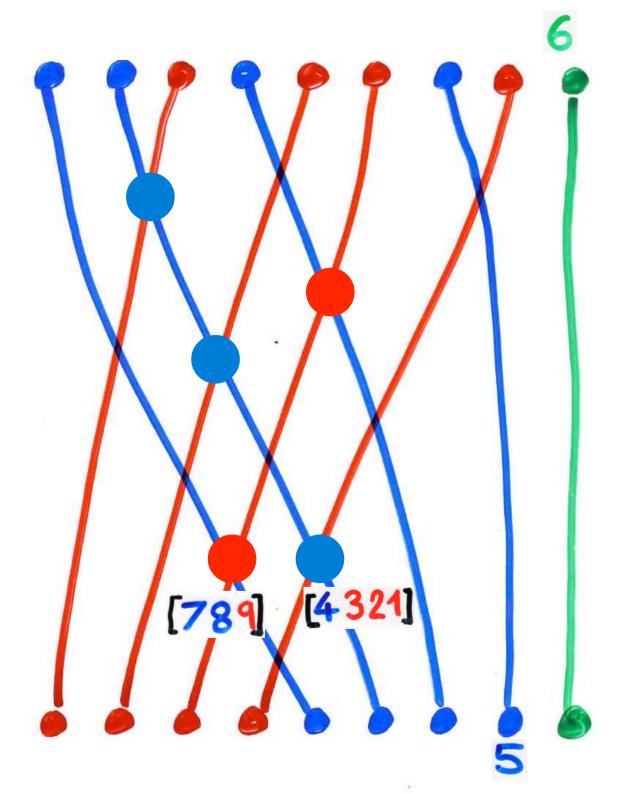


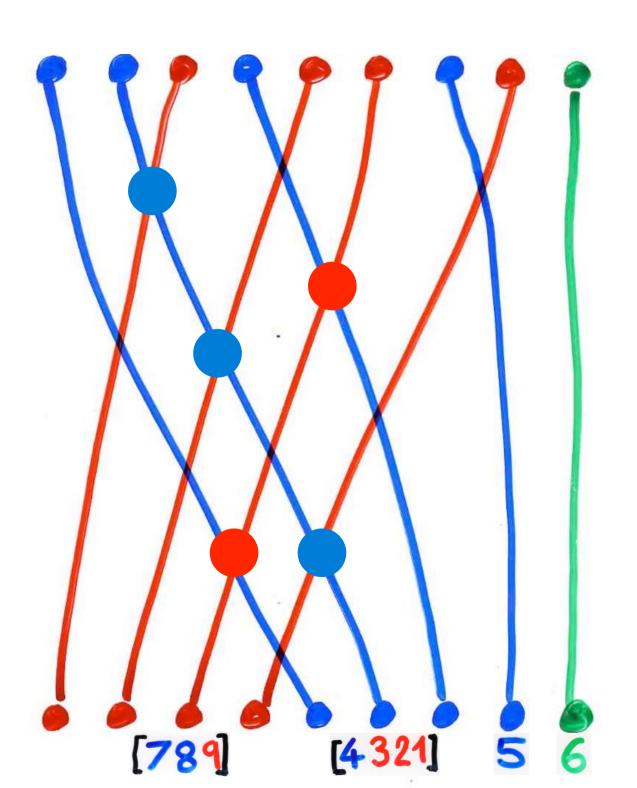


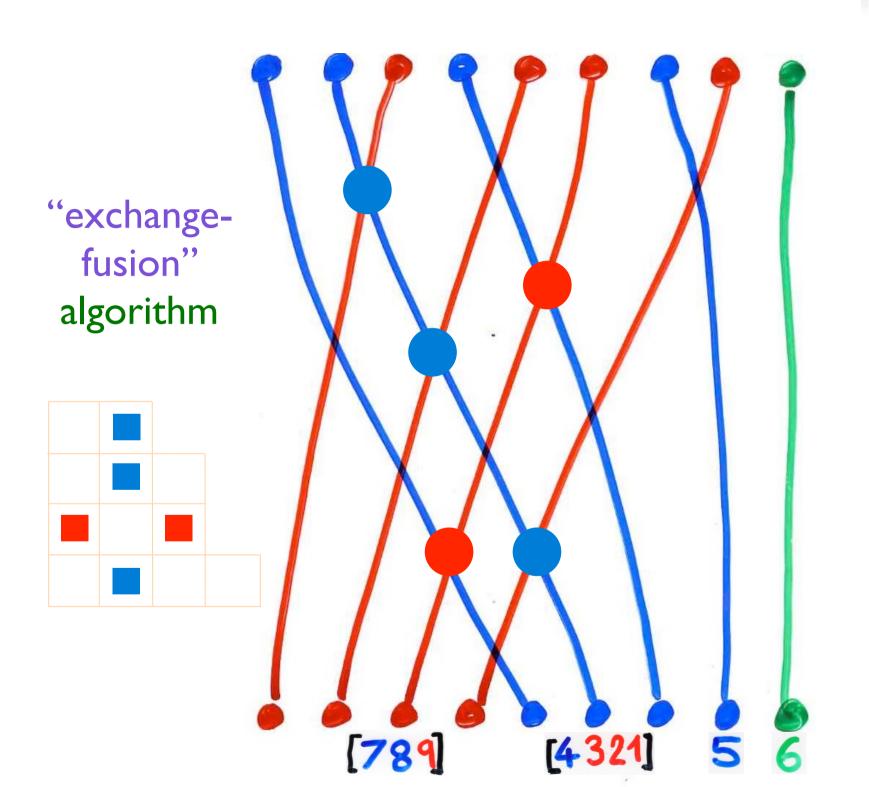




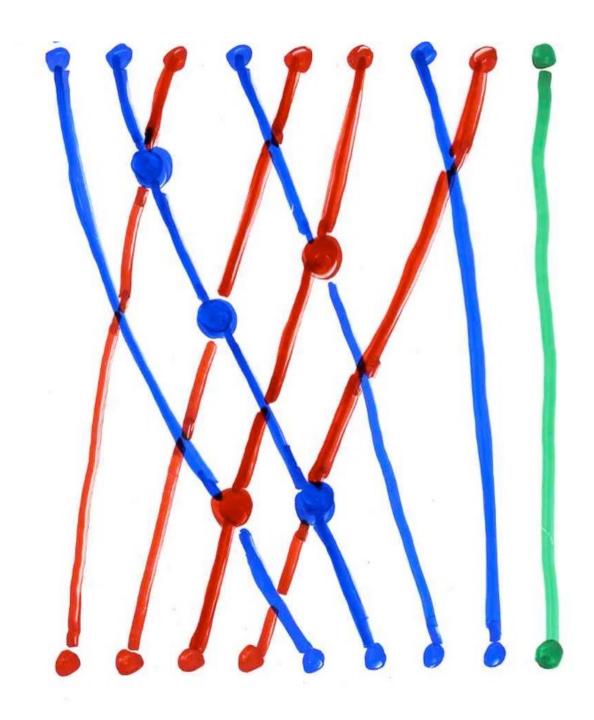


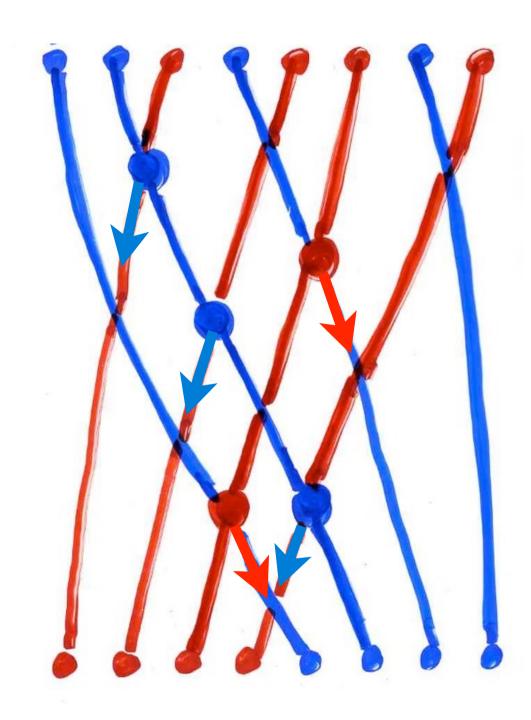


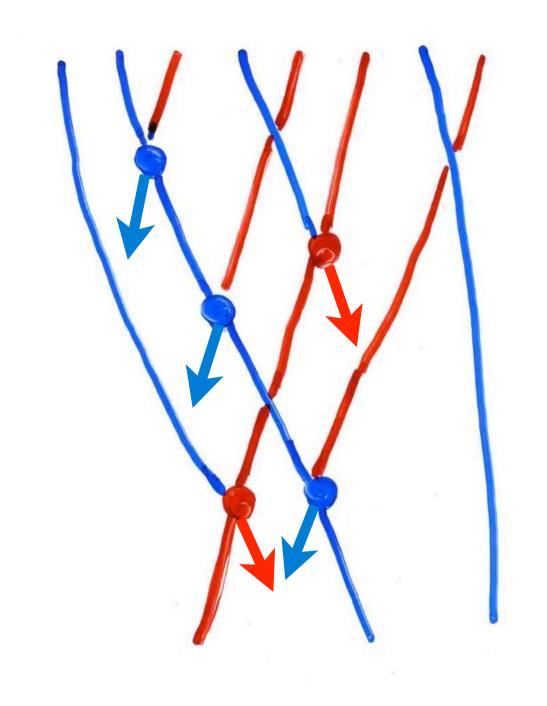


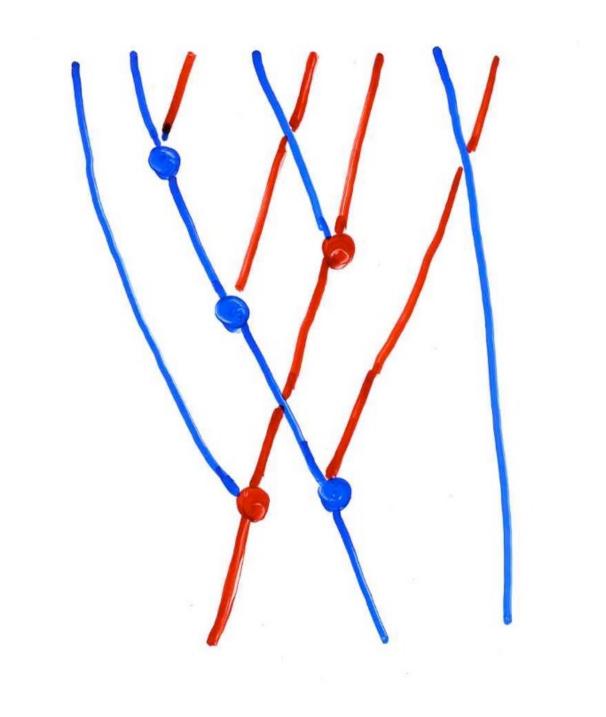


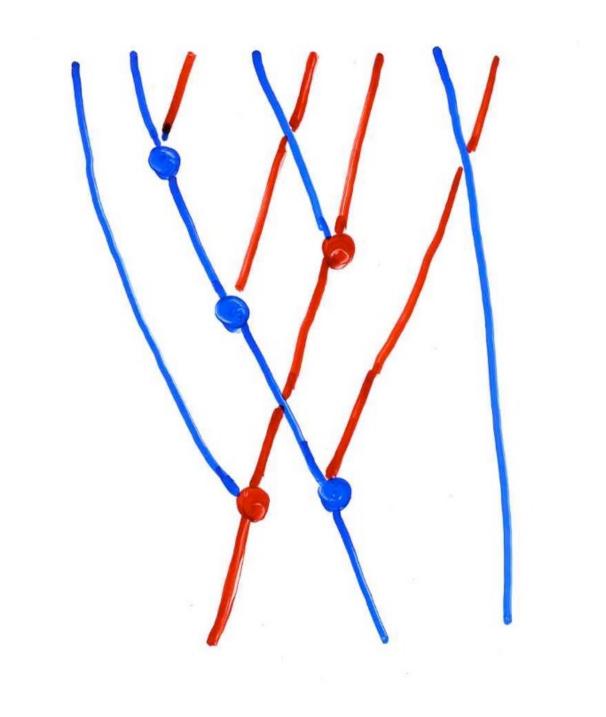
The inverse "exchange-fusion" algorithm

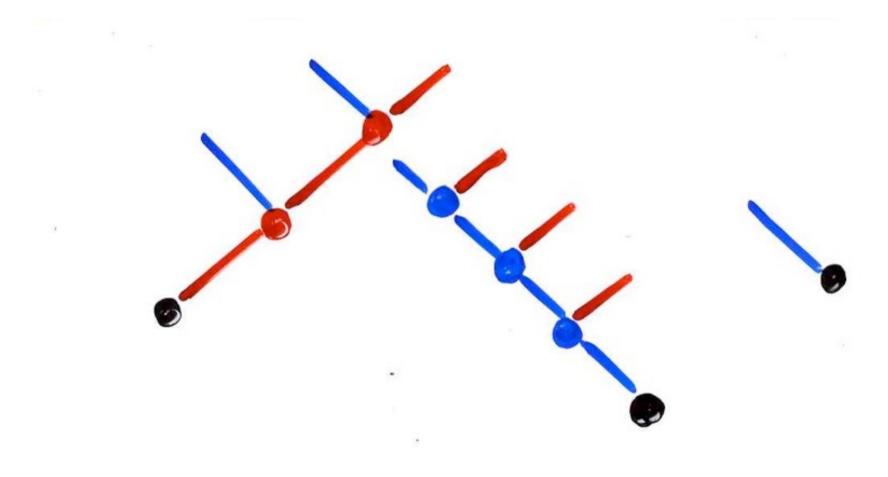


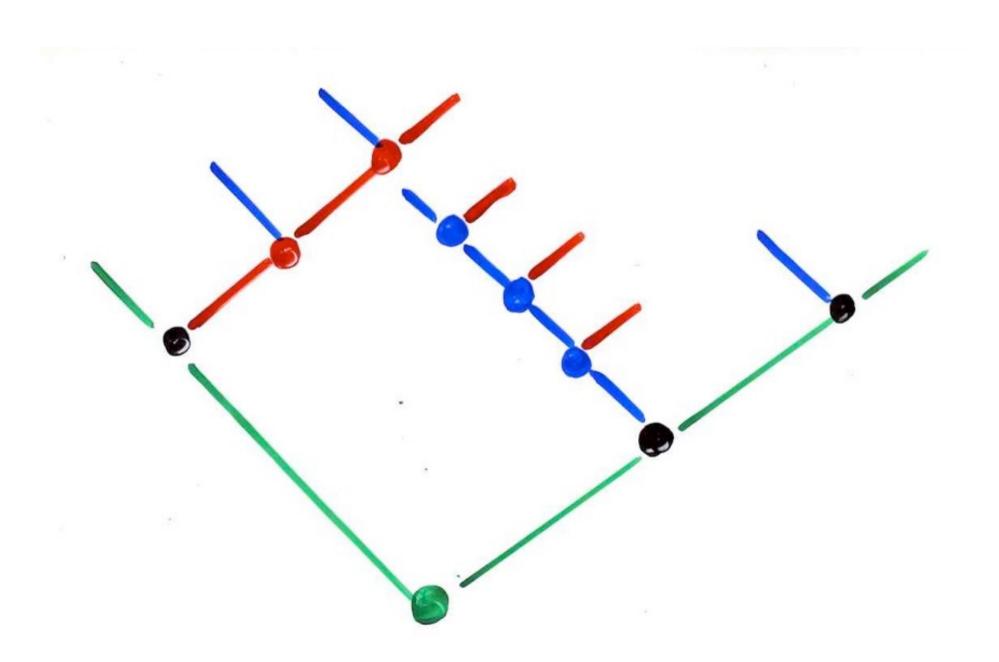


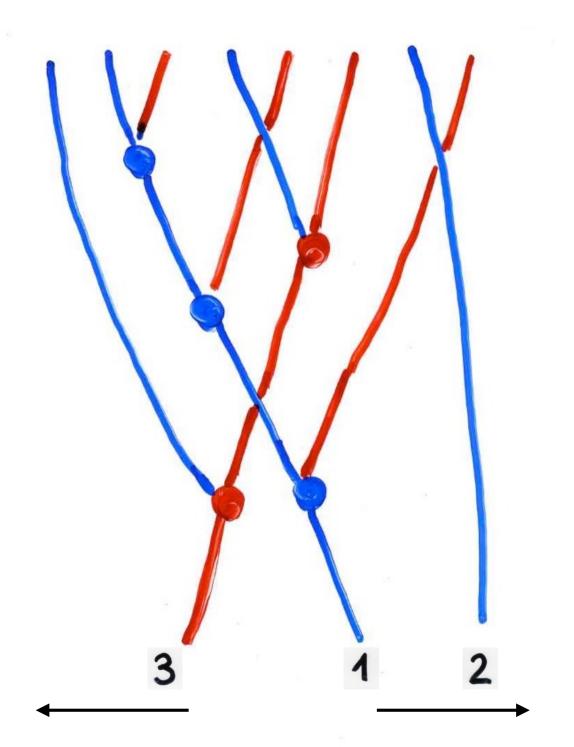


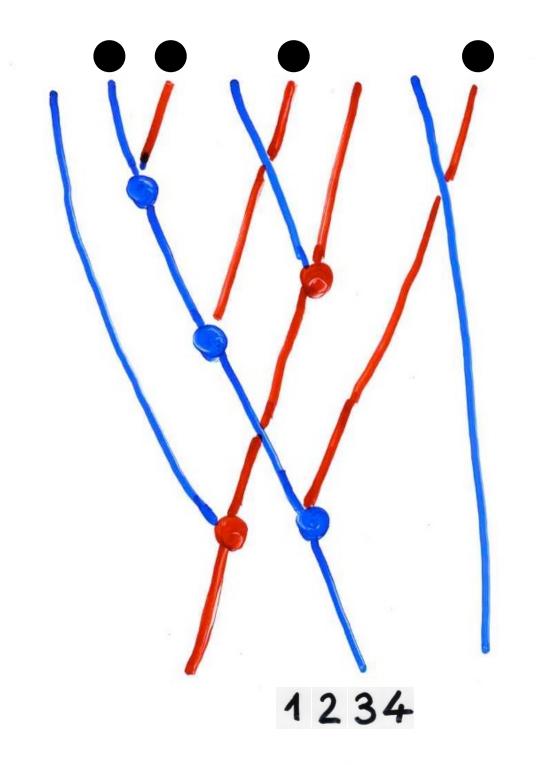


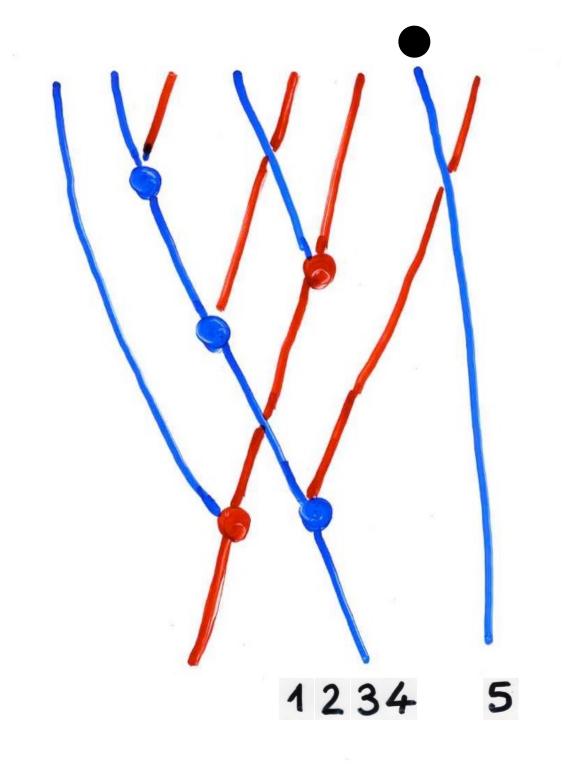


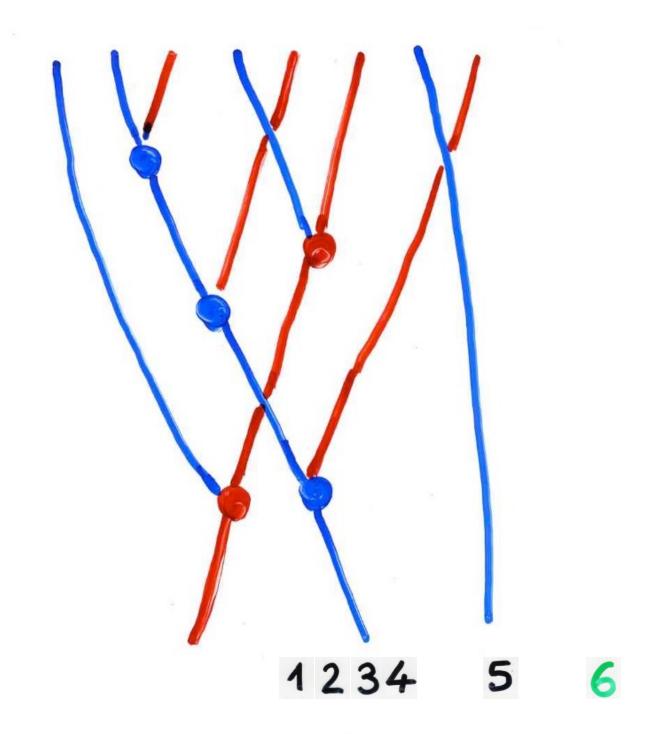


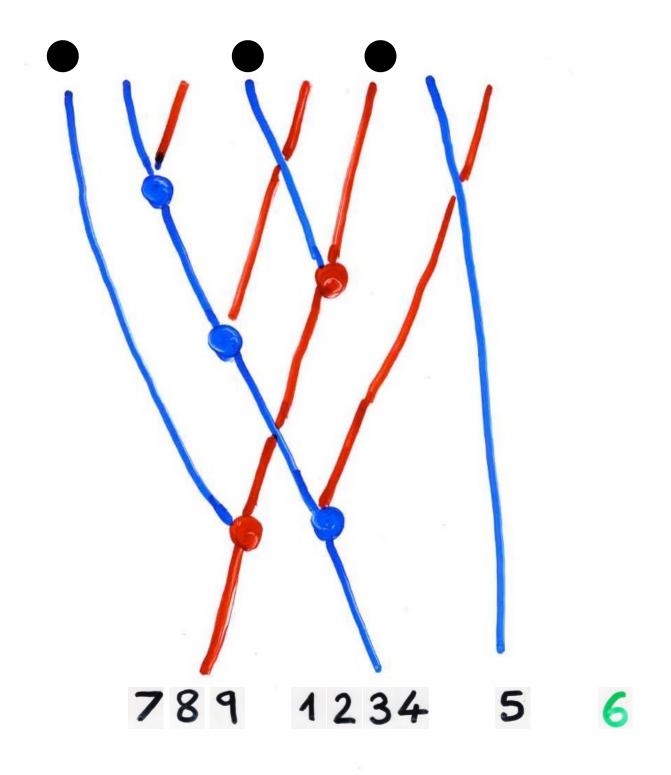


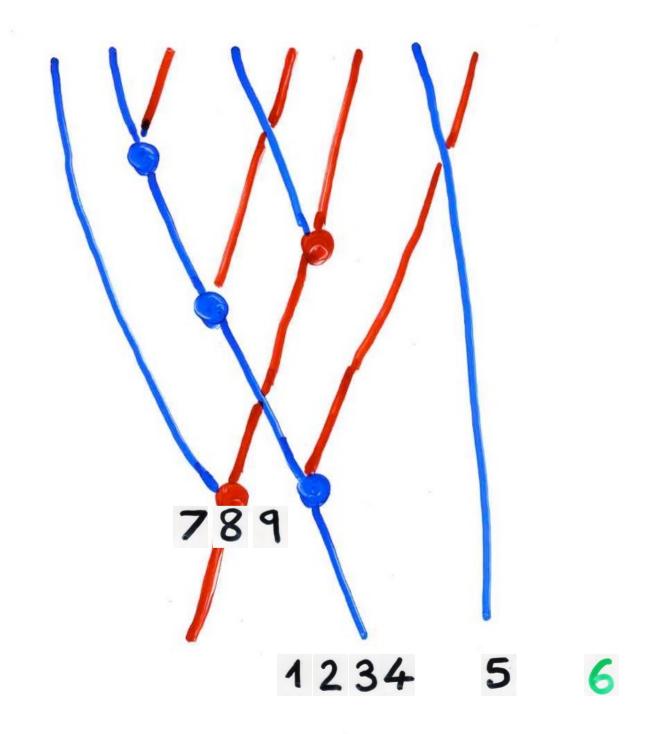


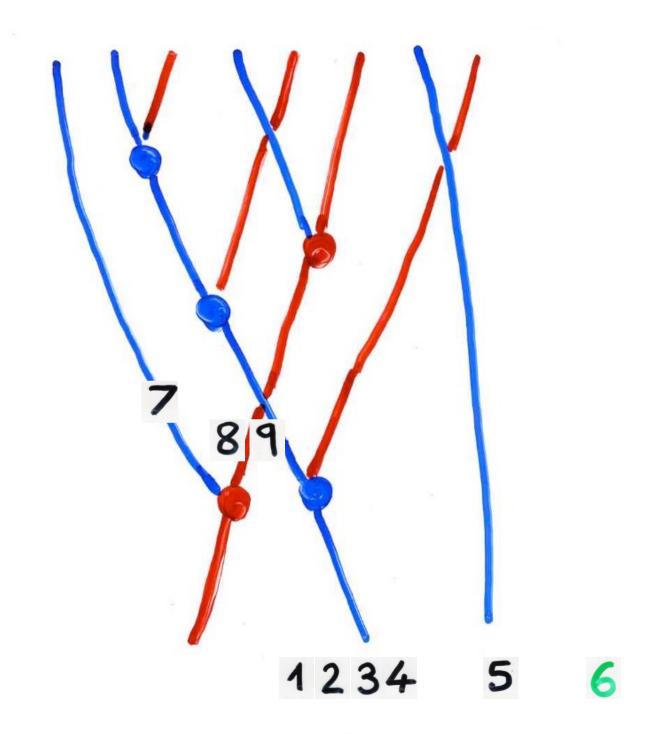


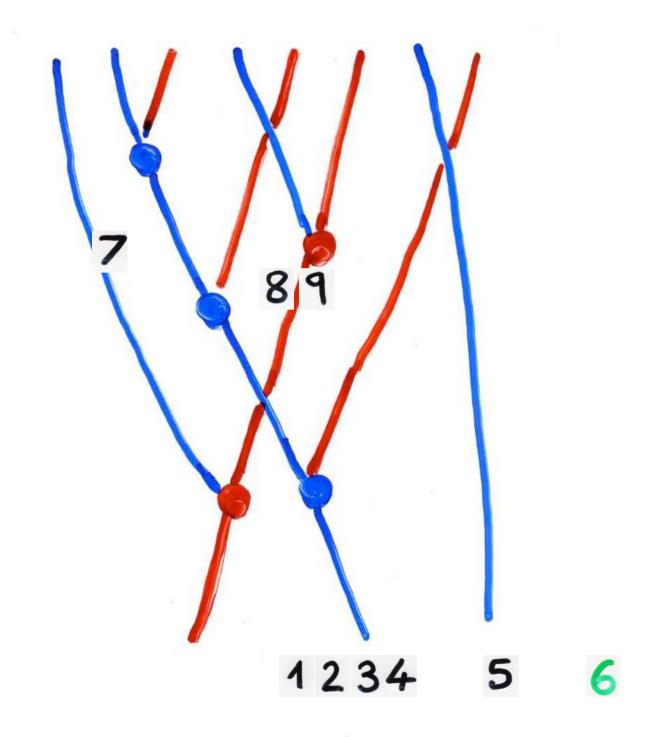


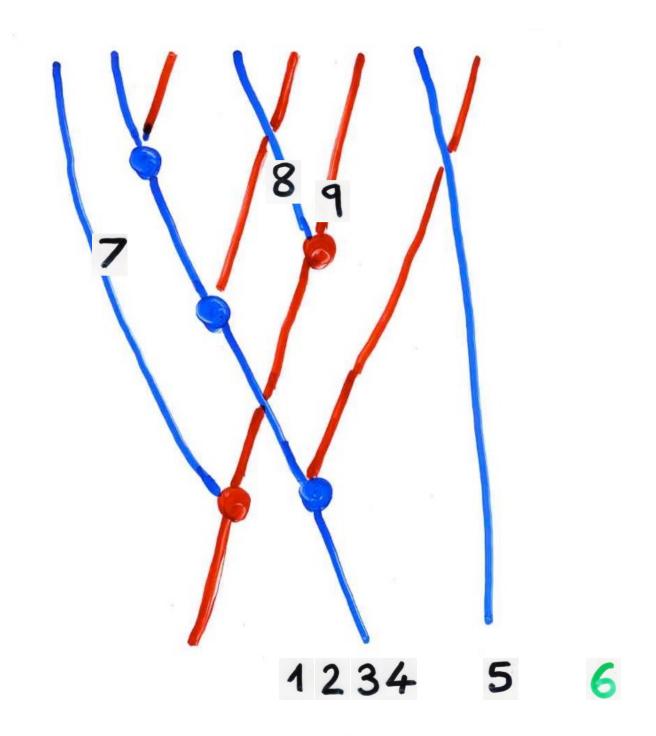


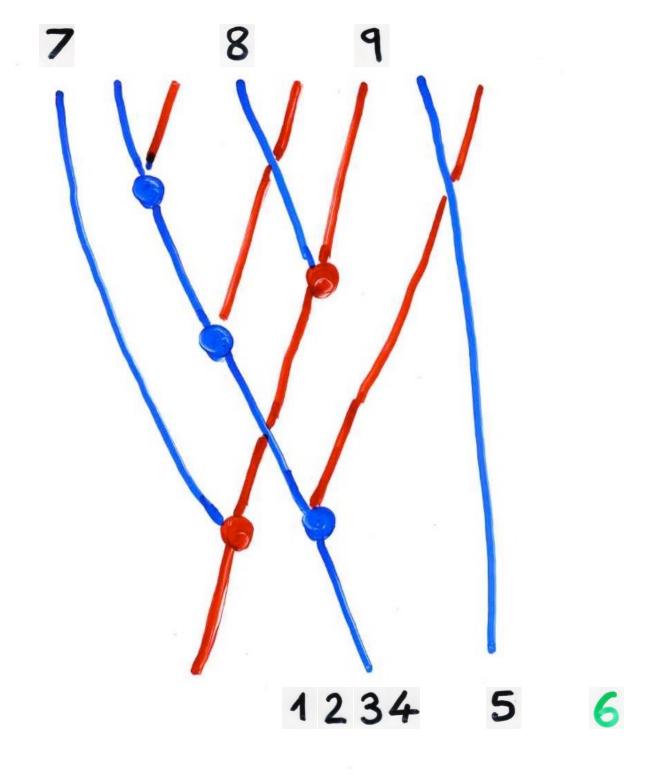


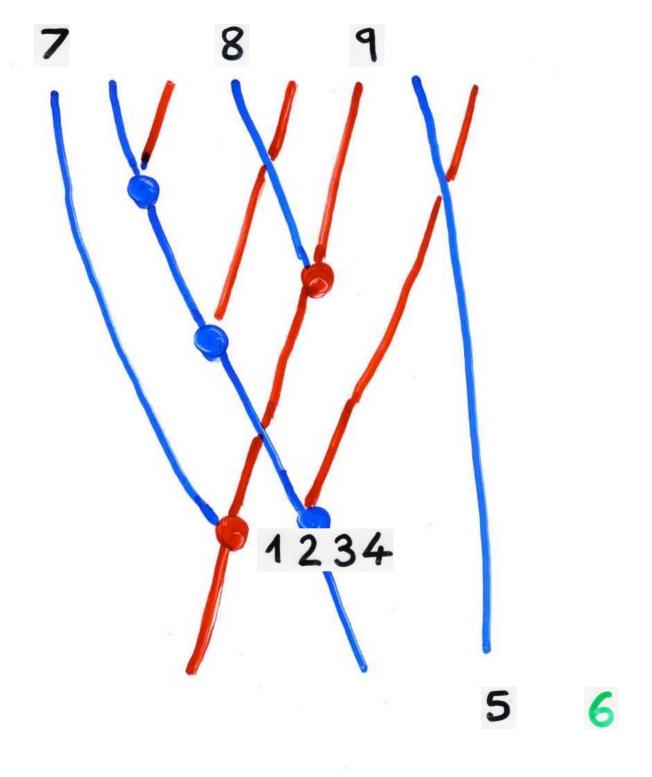


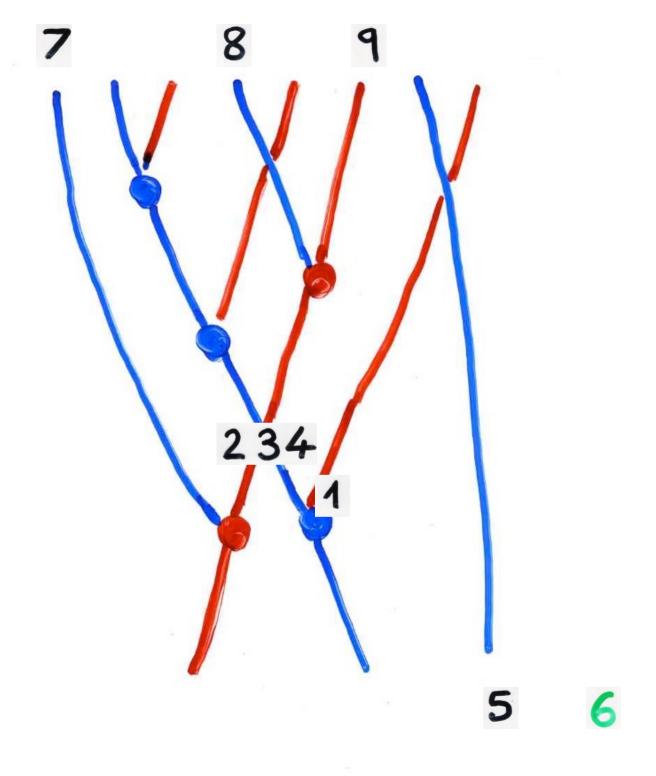


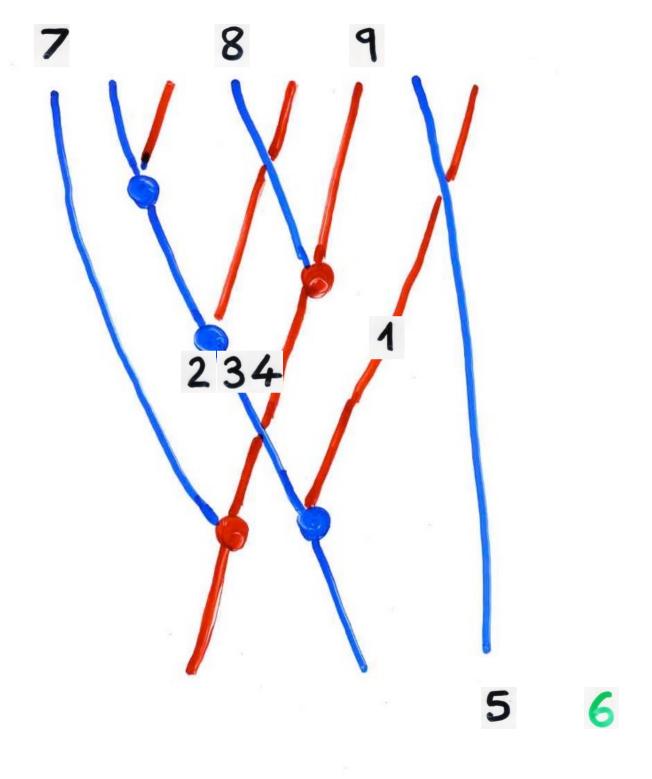


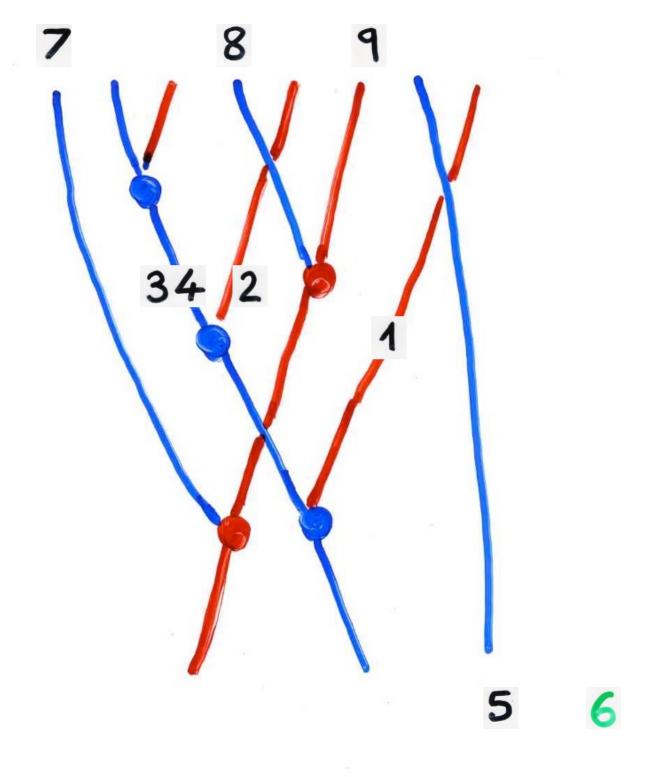


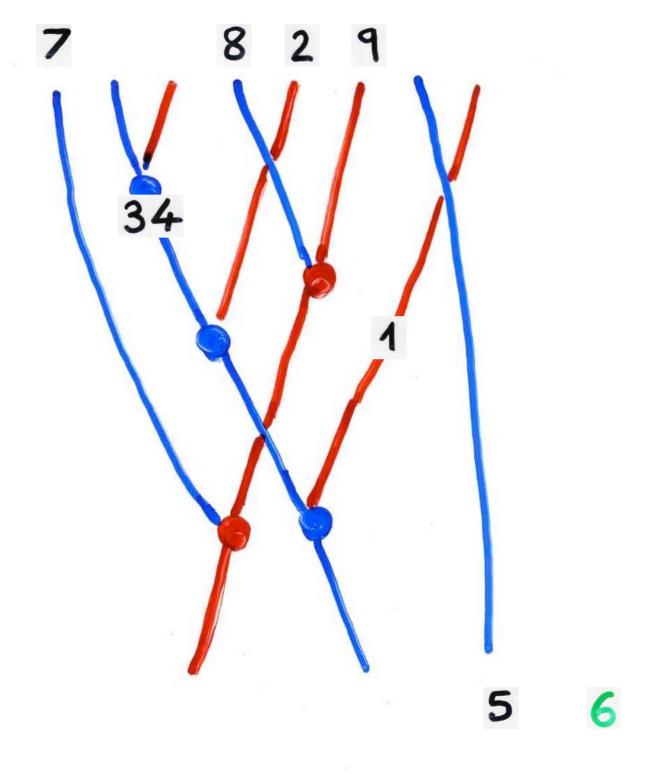


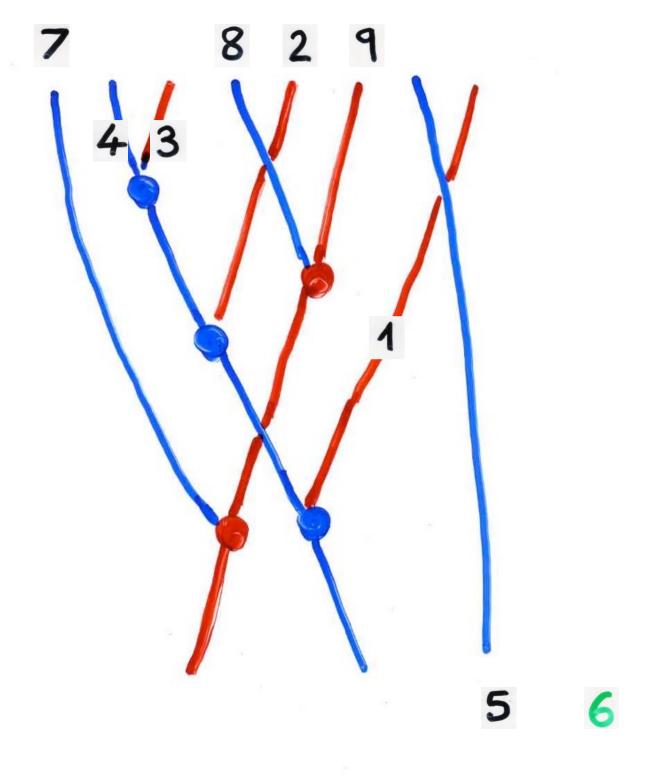


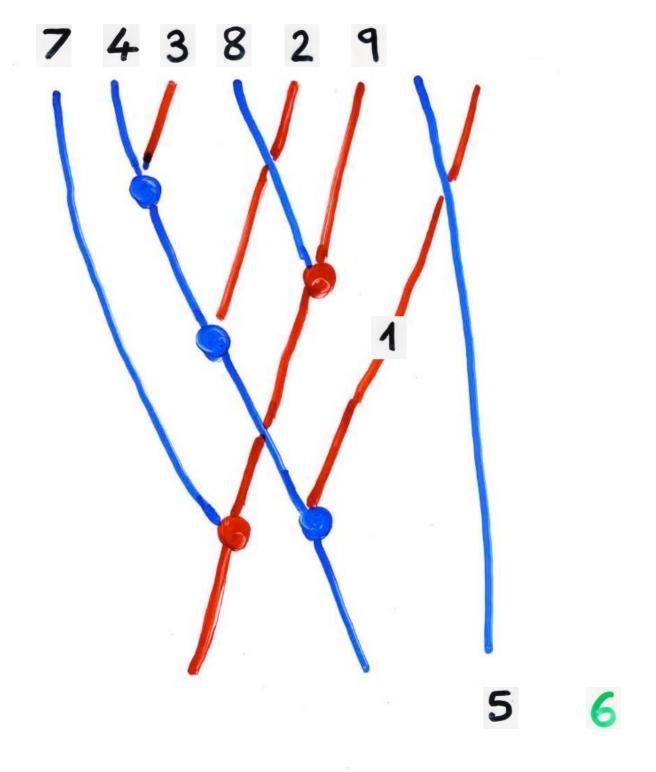


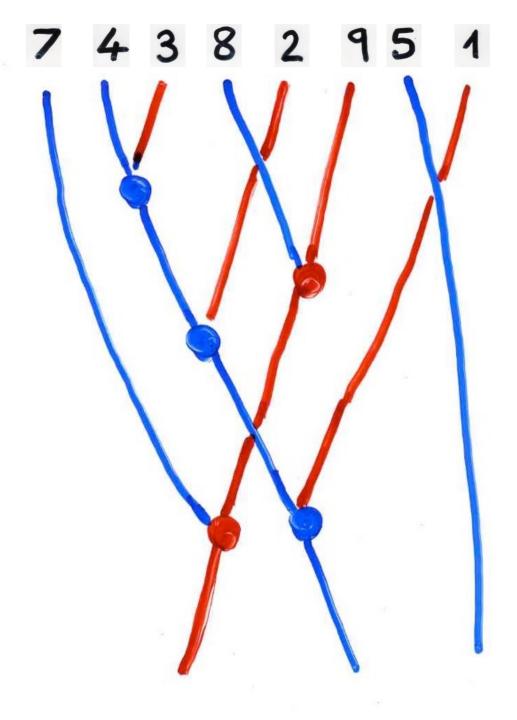


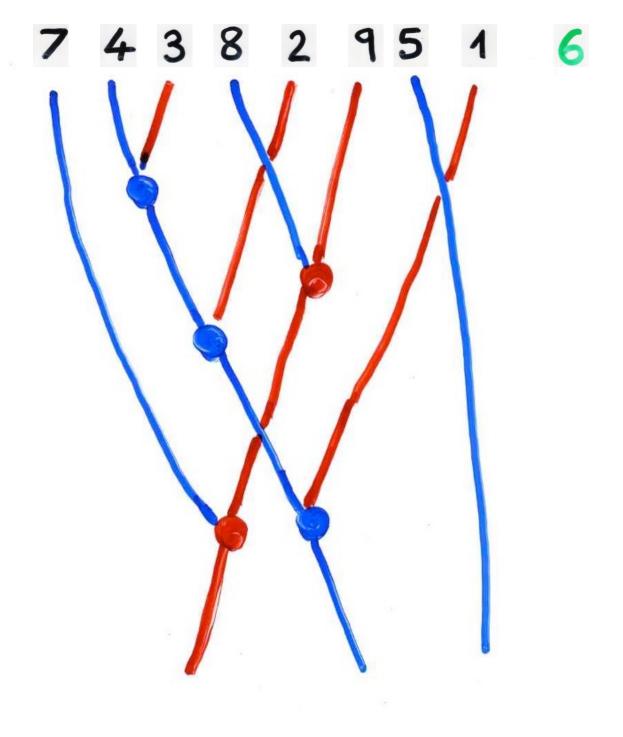












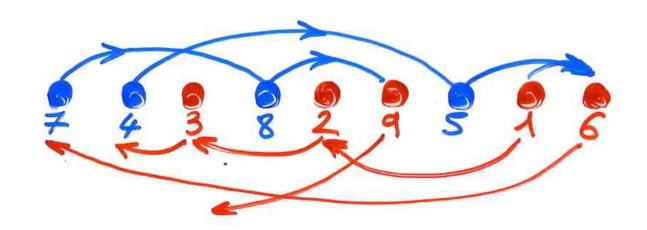
A variation of the "exchange-fusion" algorithm:

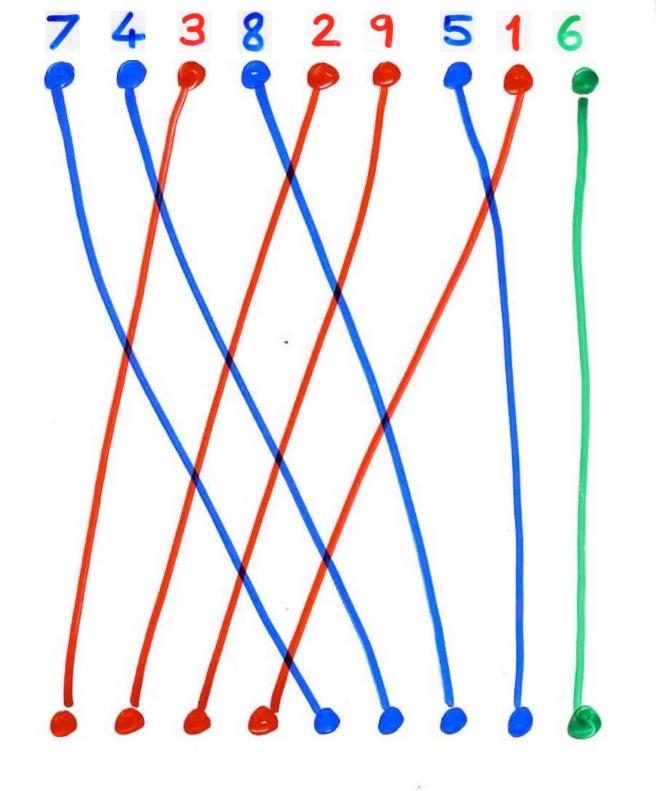
The "exchange-delete" algorithm

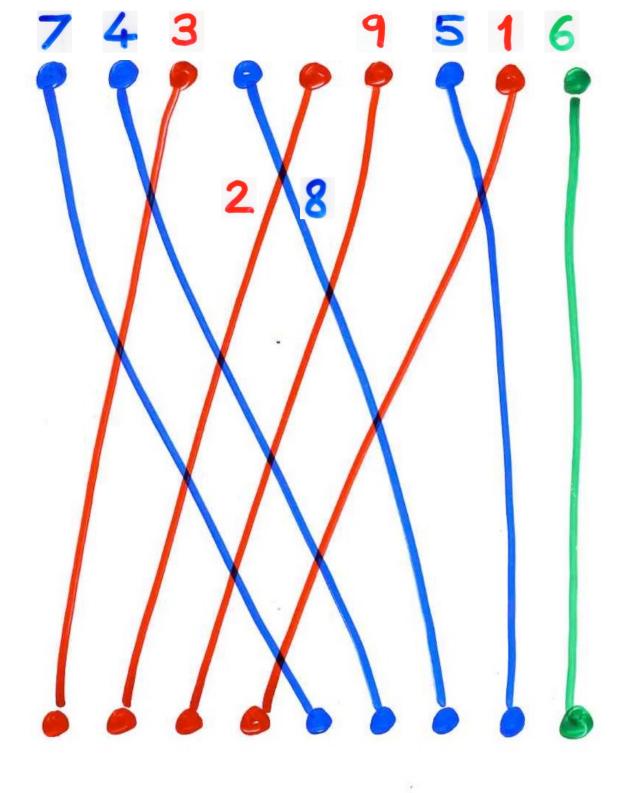
Def- Permutation
$$\sigma = \sigma(u) \cdots \sigma(n)$$

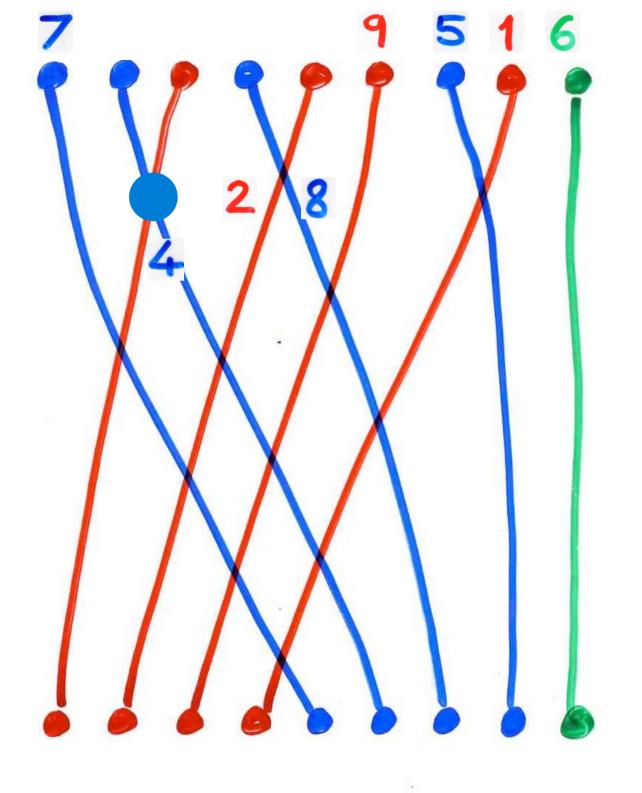
 $z = \sigma(i)$, $1 \le z < n$
(veleur) $z = \sigma(i)$, $1 \le z < n$
(veleur) $z = \sigma(i)$, $1 \le z < n$
 $z + 1 = \sigma(i)$, $1 \le i < i$

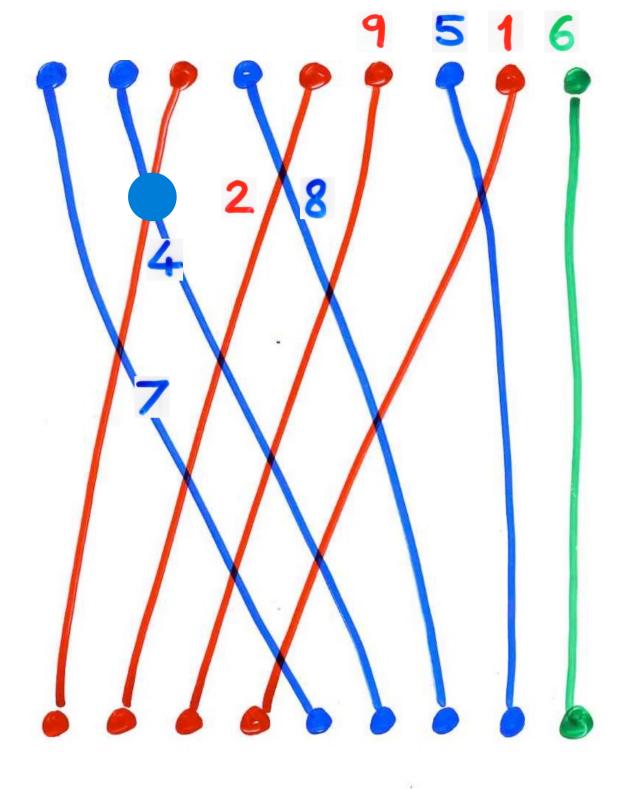
· convention x=n est un recul

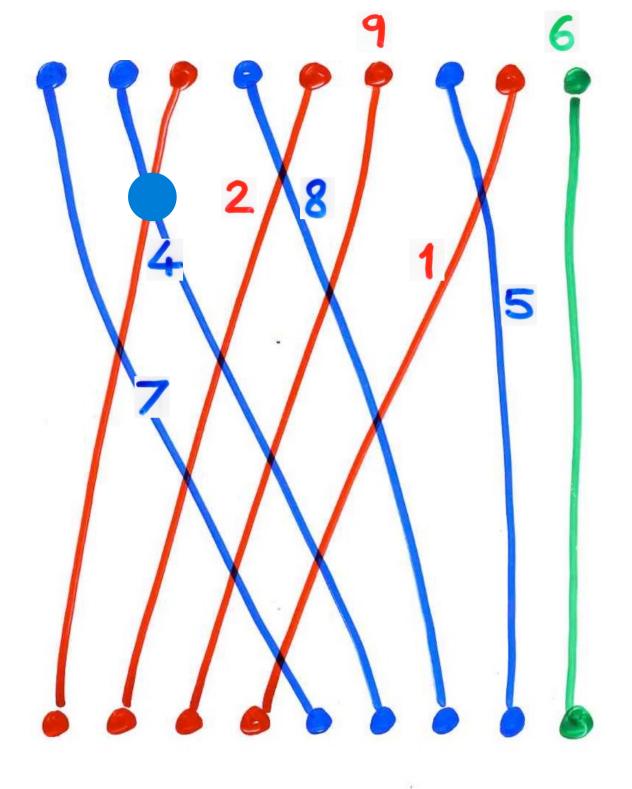


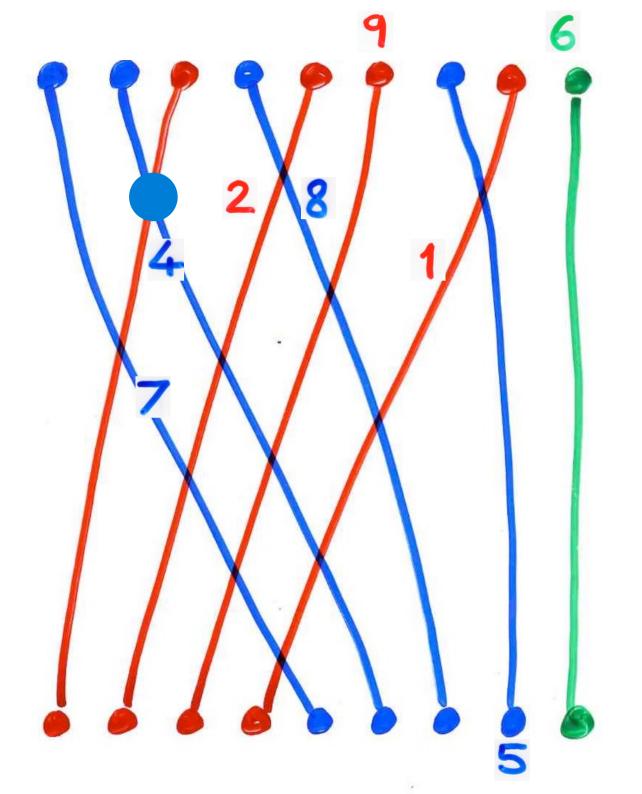


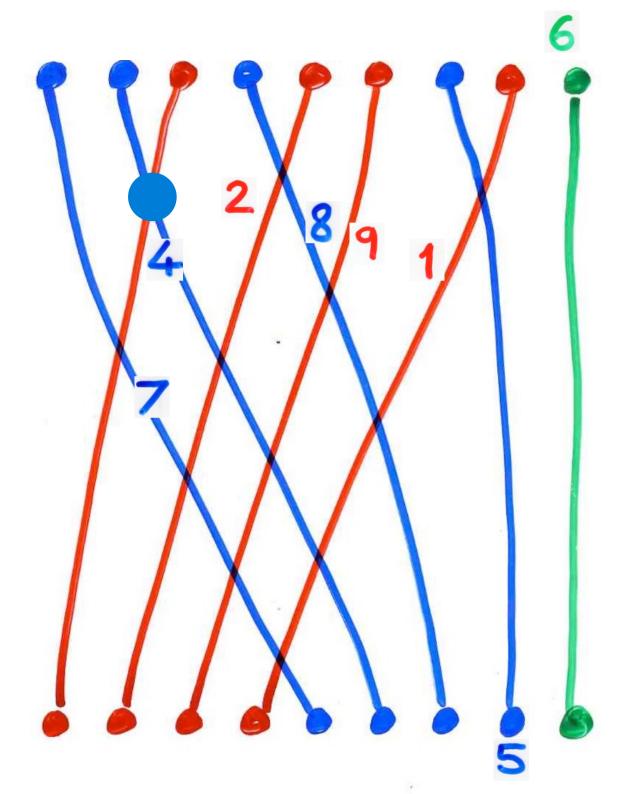


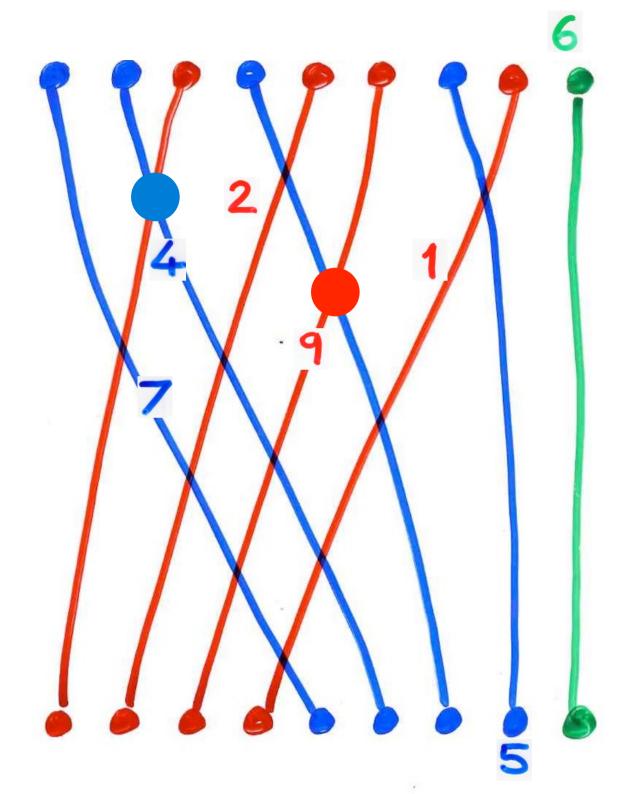


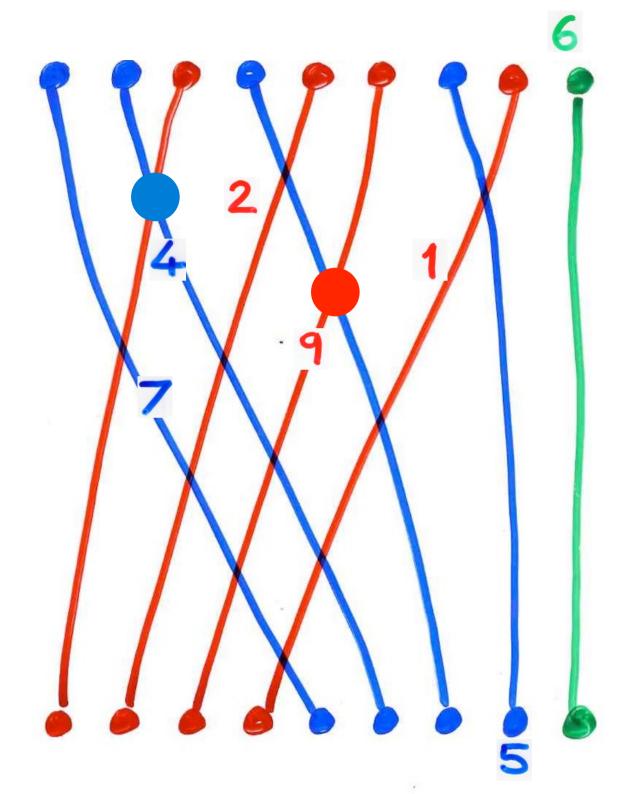


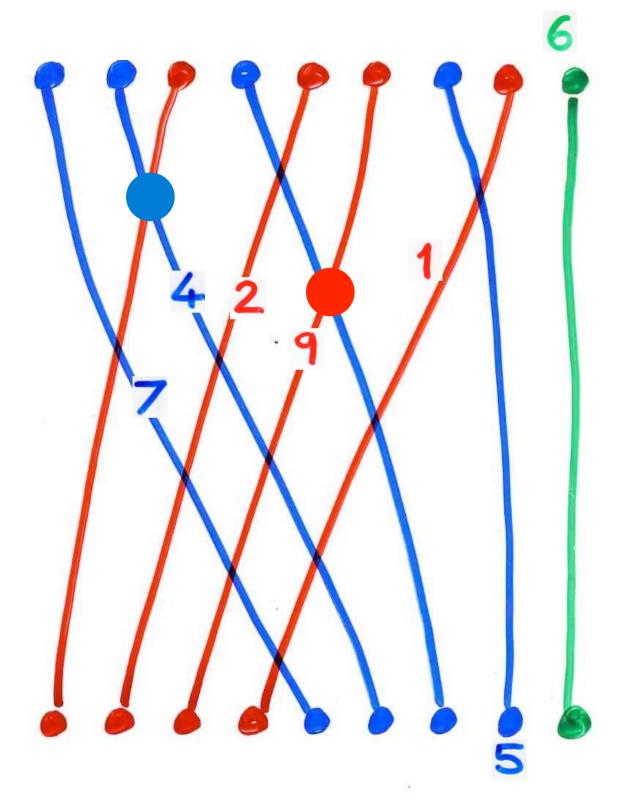


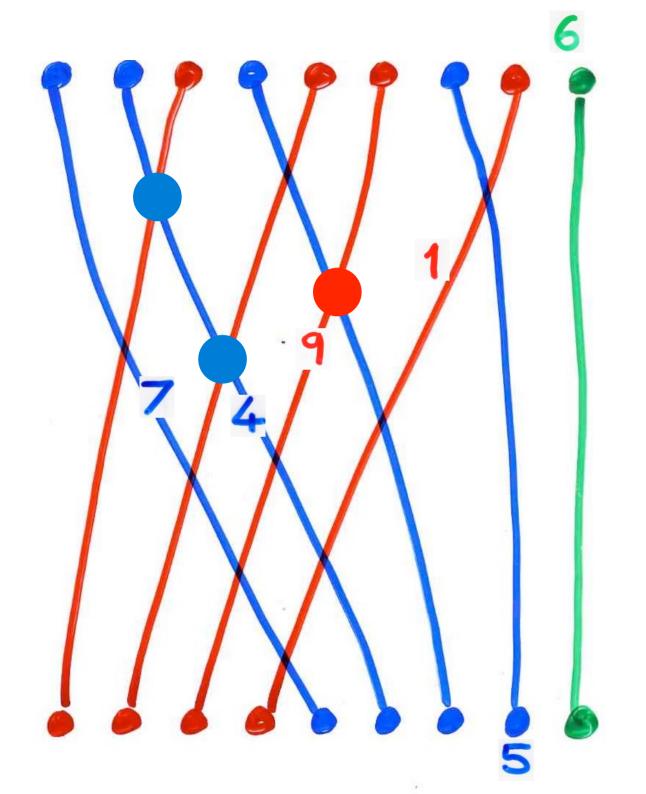


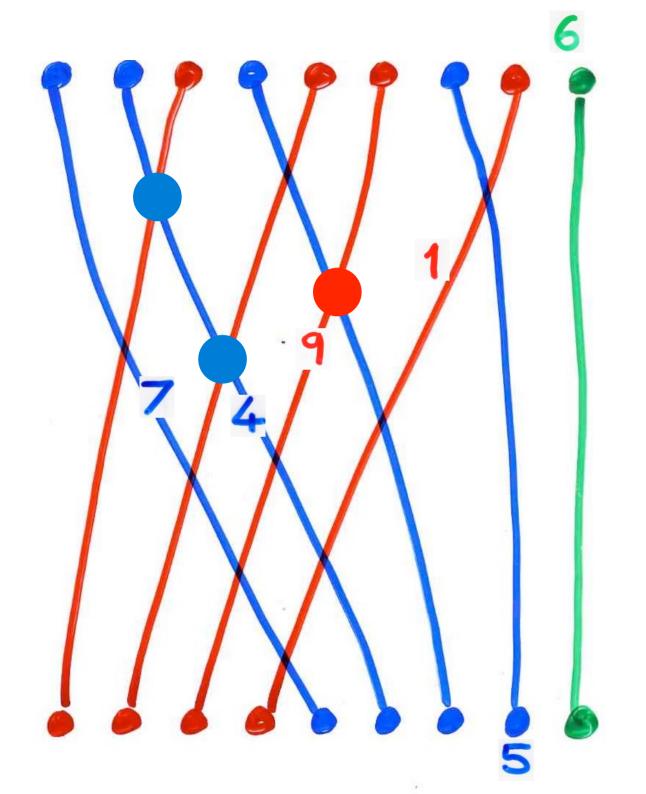


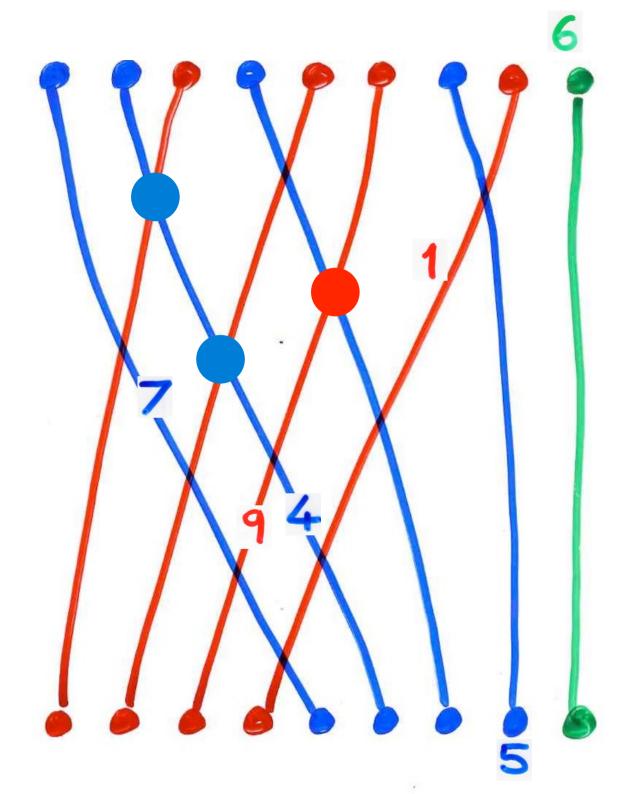


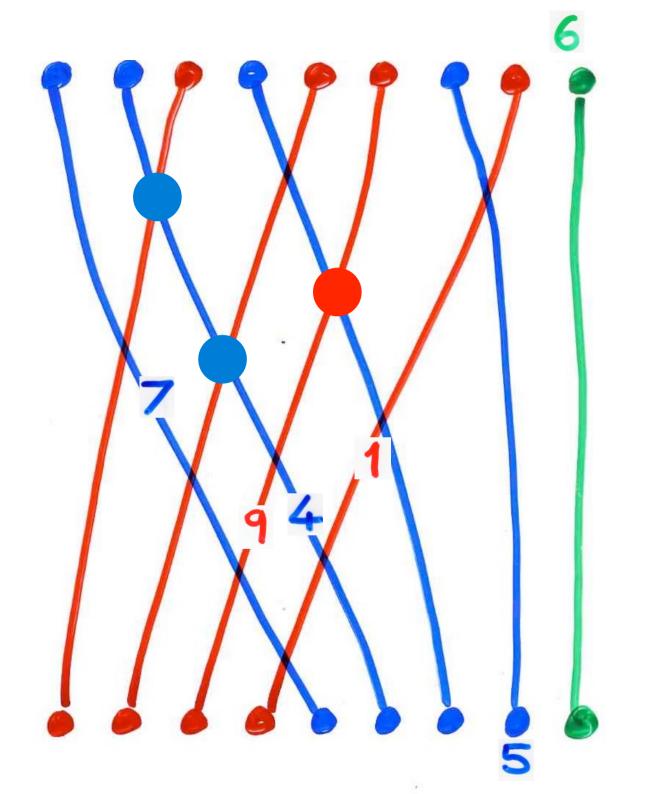


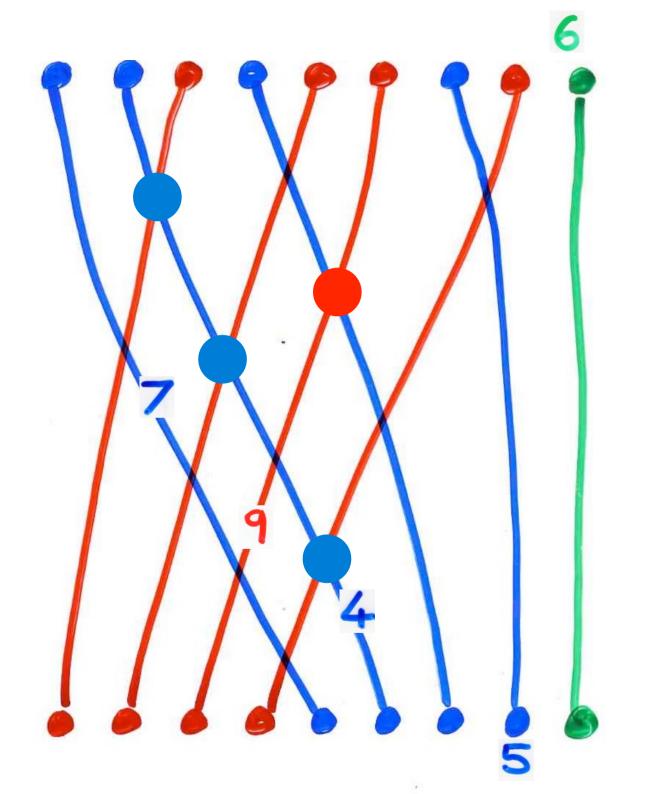


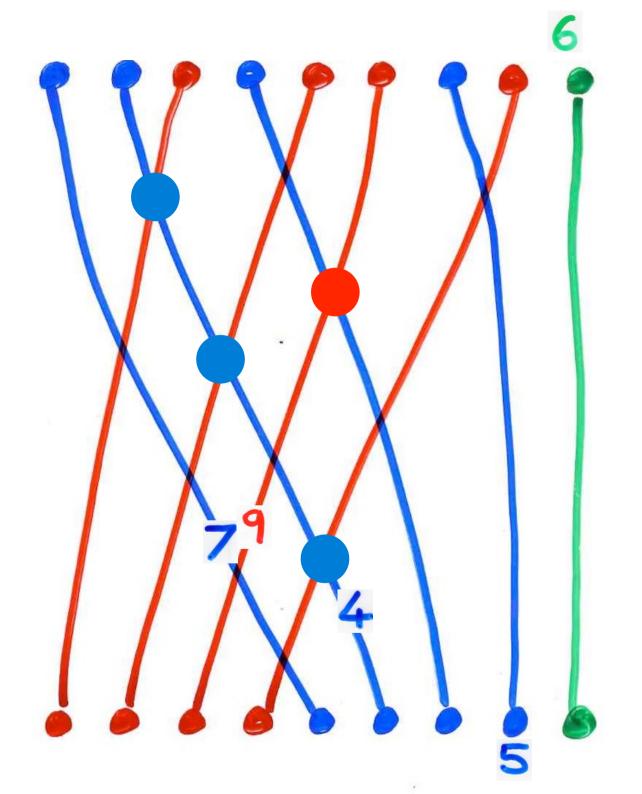


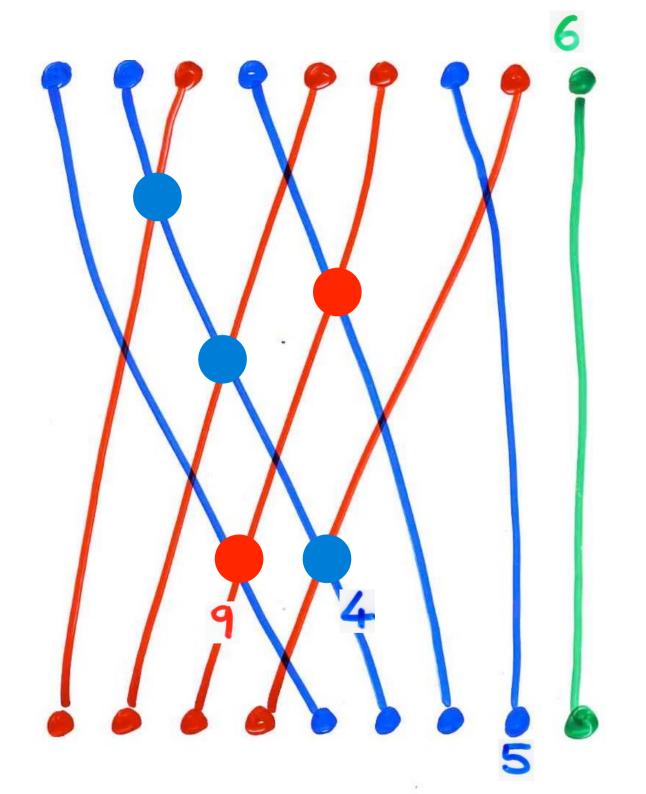


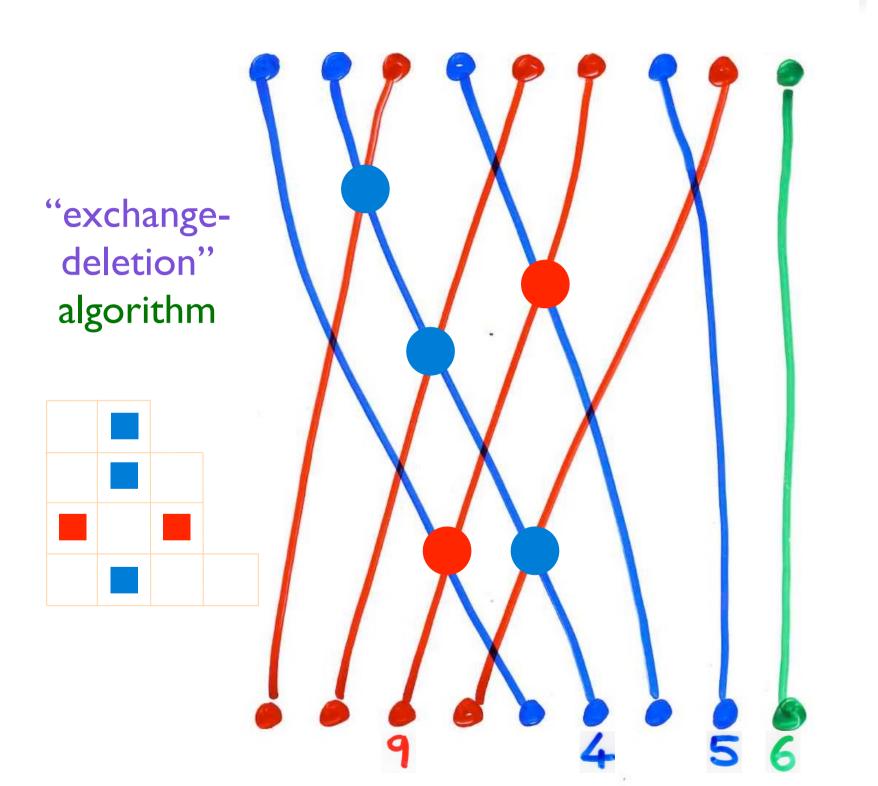


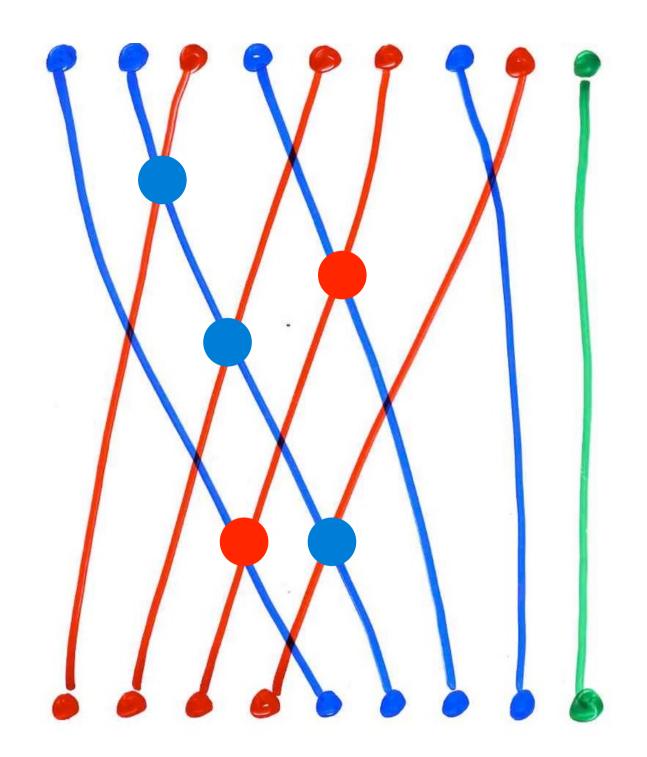




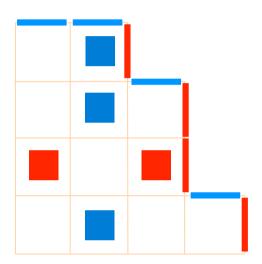


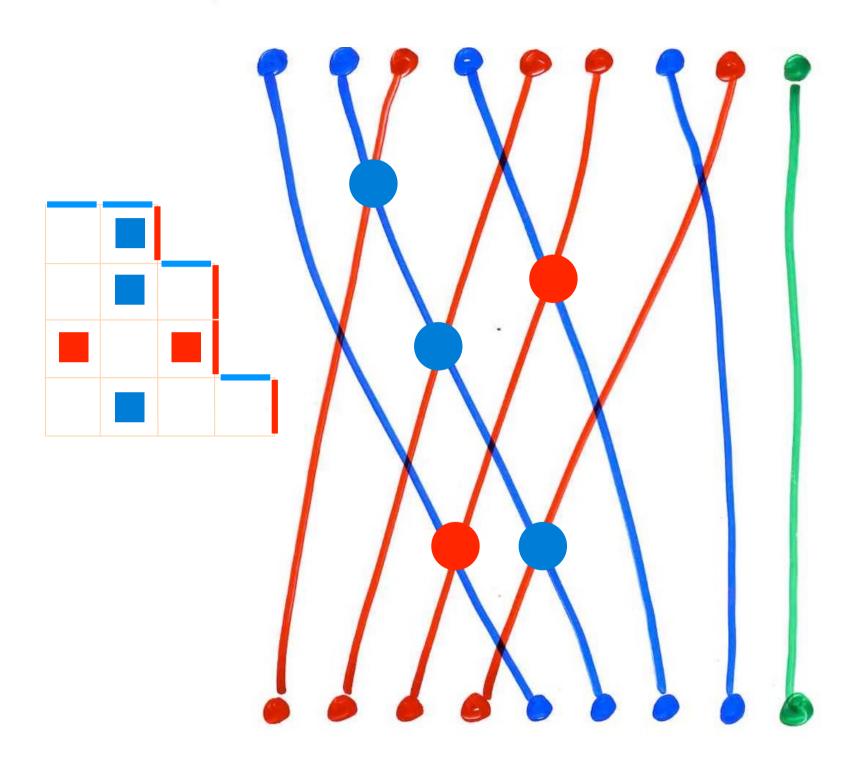


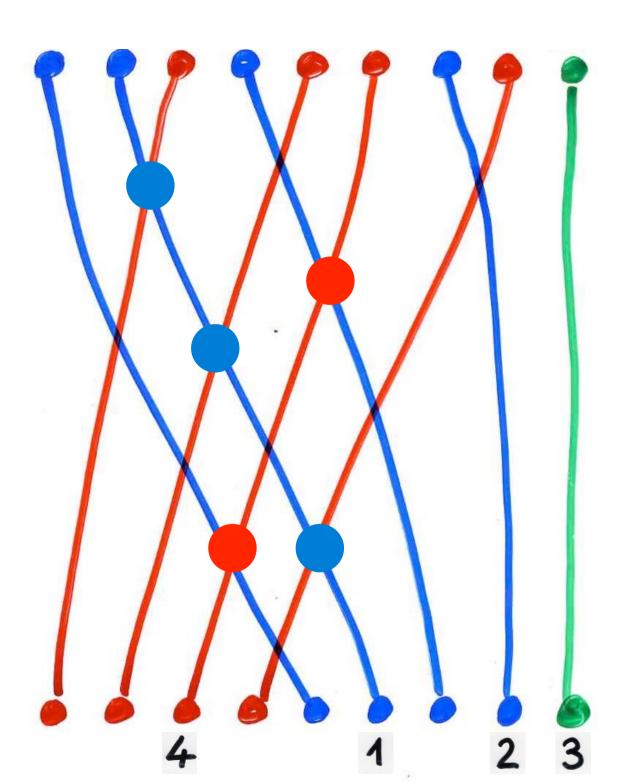


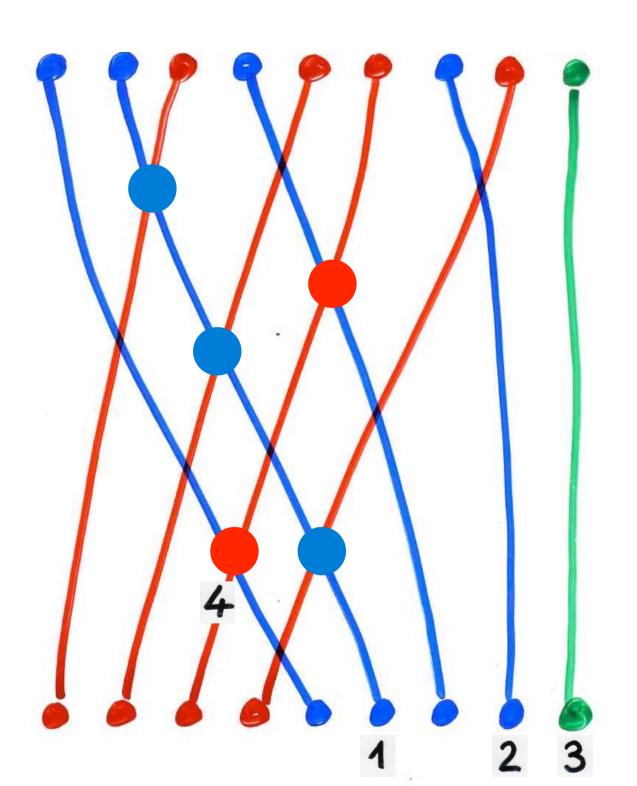


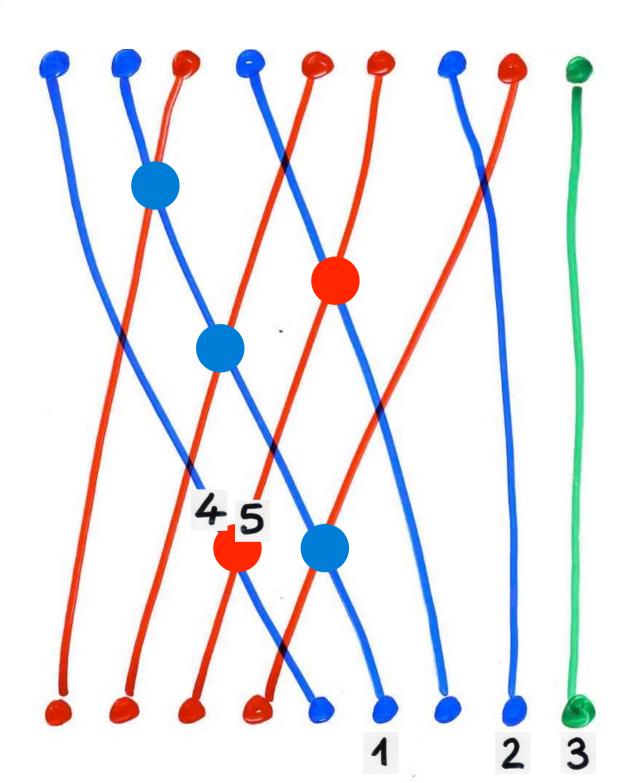
The inverse "exchange-delete" algorithm

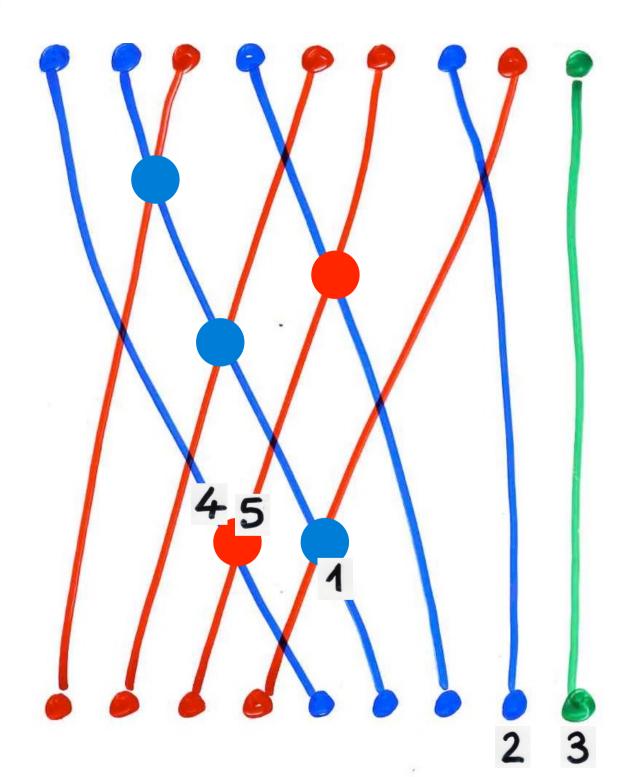


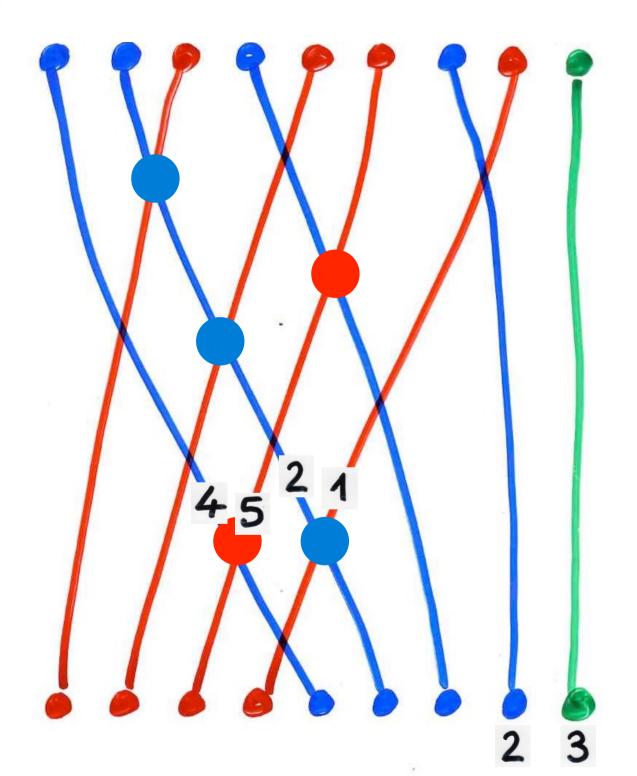


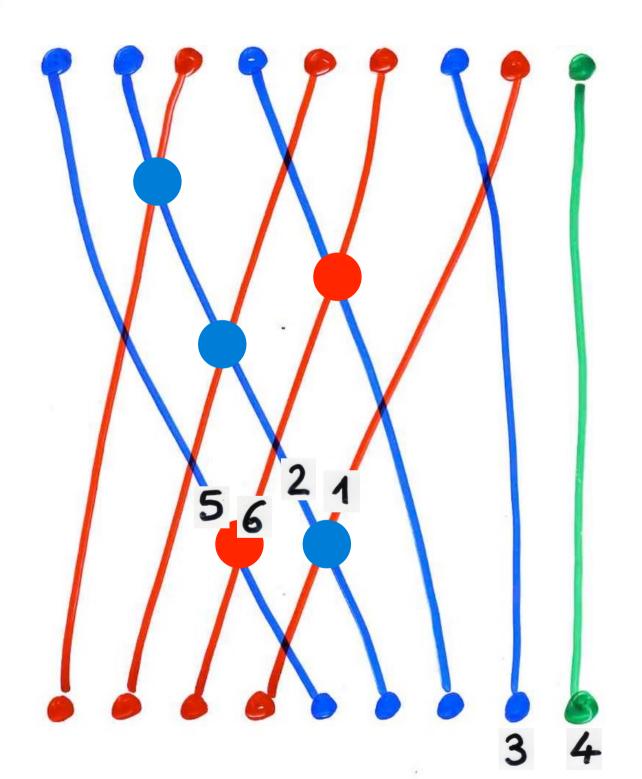


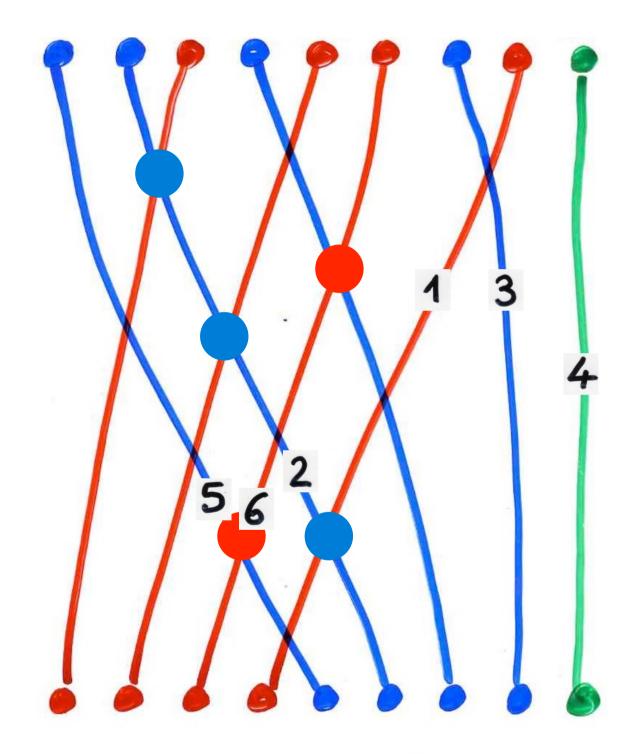


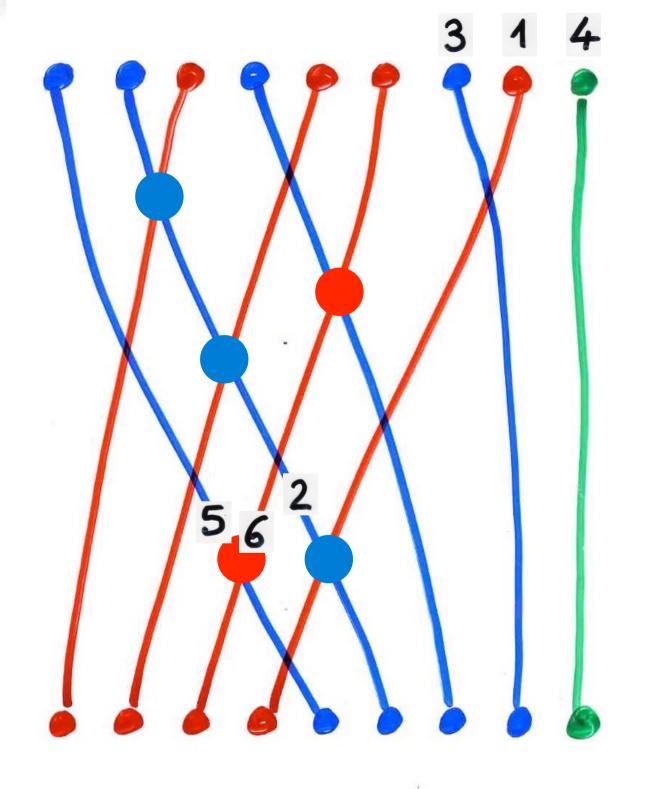


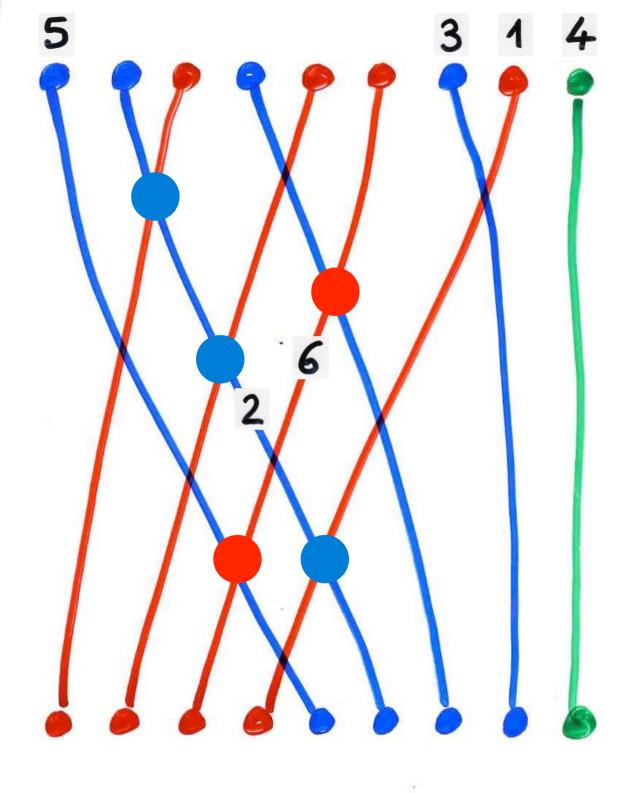


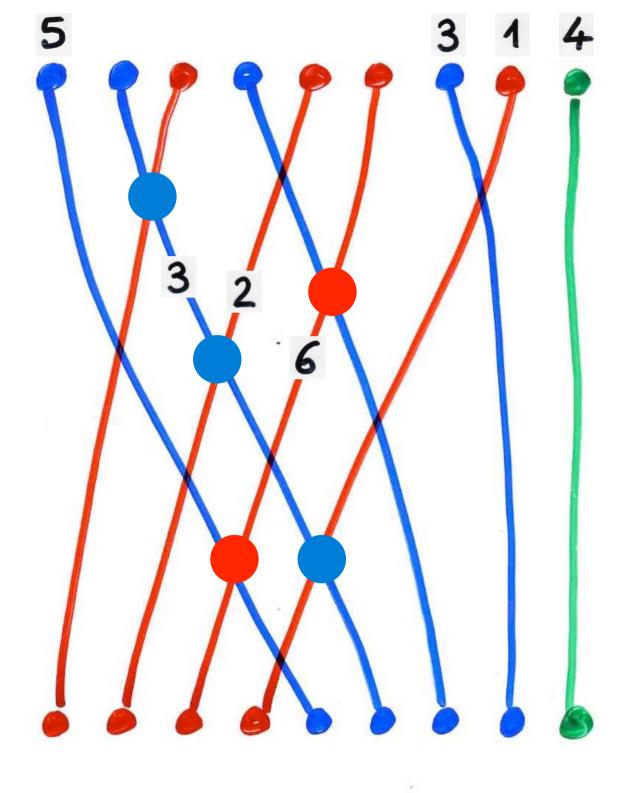


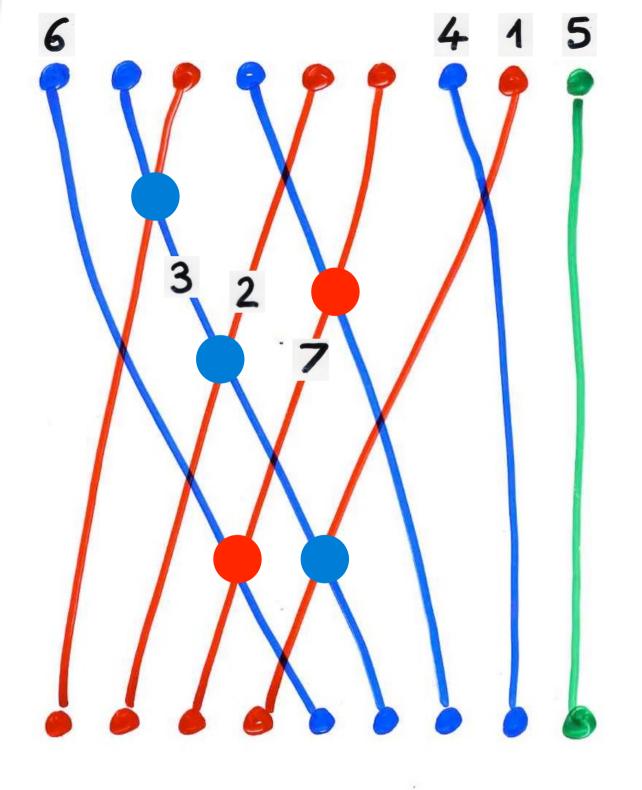


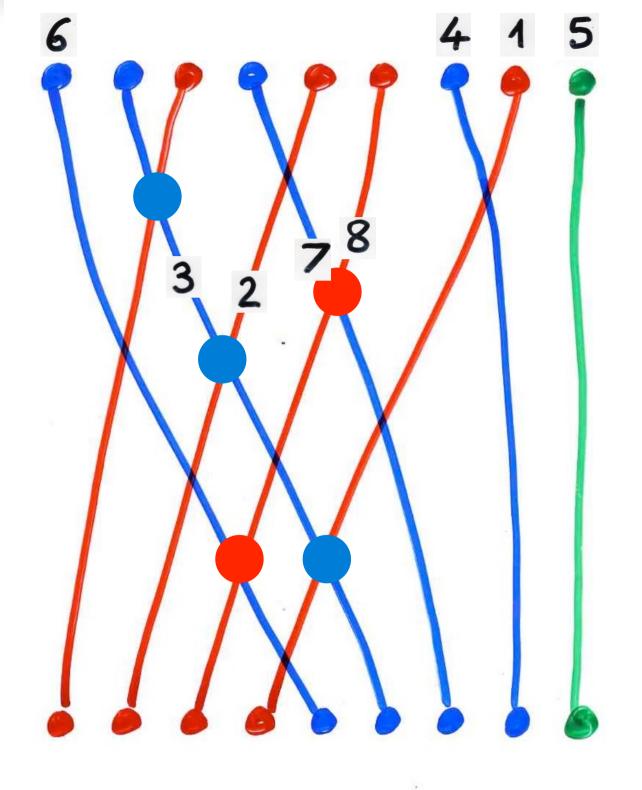


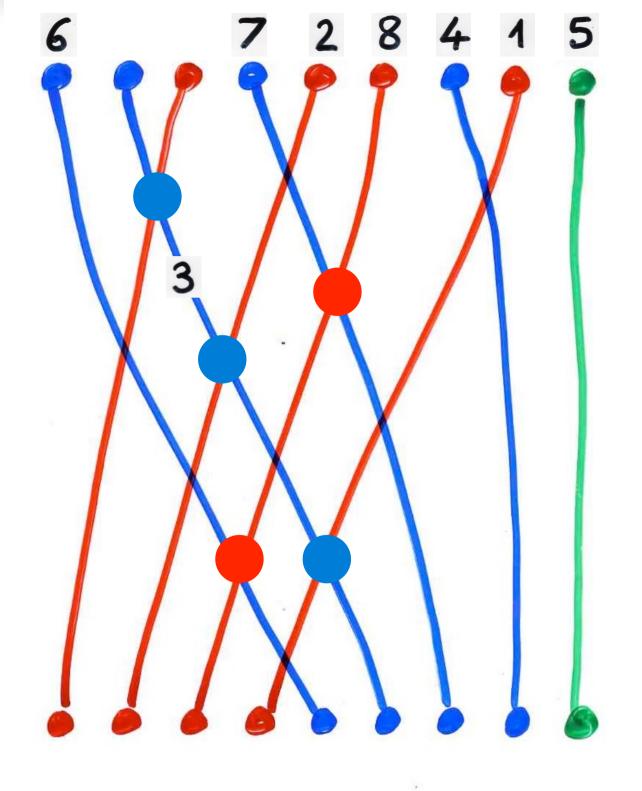


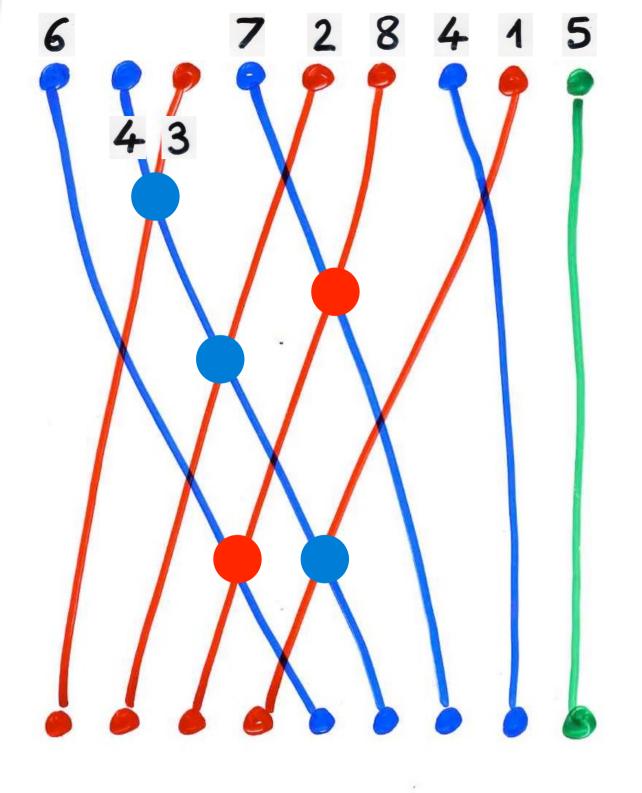


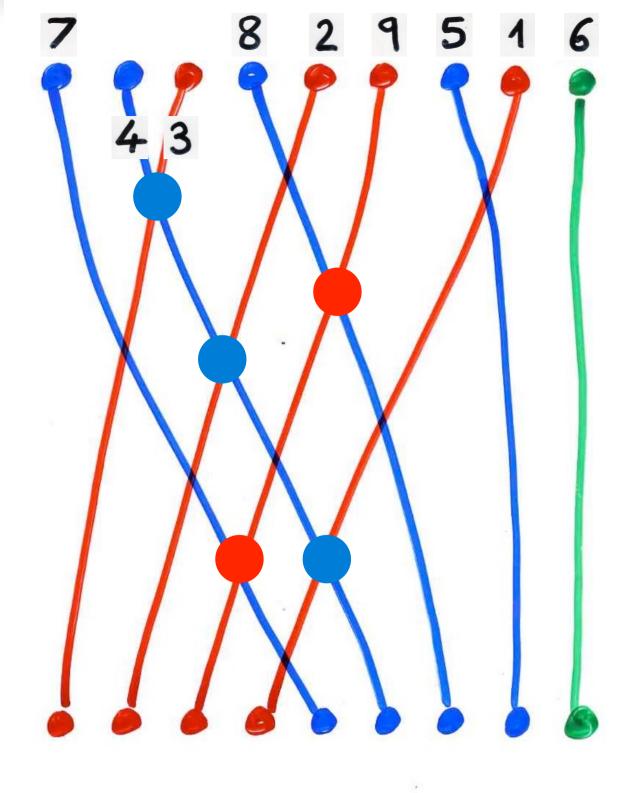


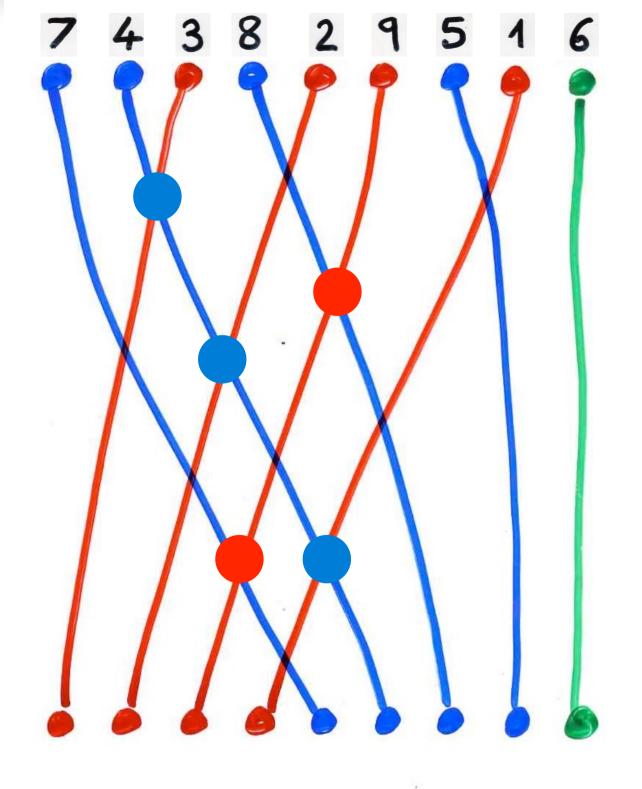












commutation diagrams

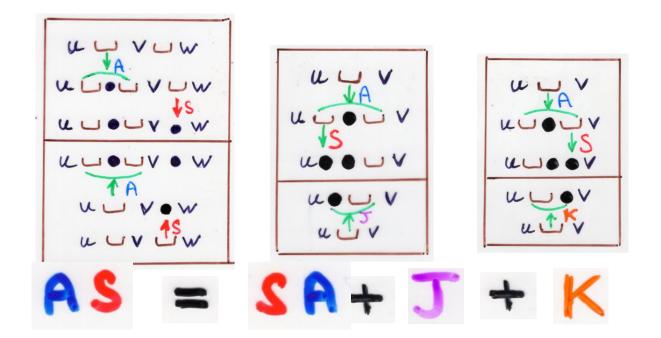
$$AS = SA + I_{v}T + KI_{h}$$

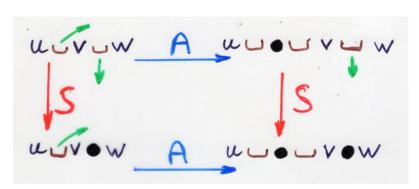
$$AK = KA + I_{v}A$$

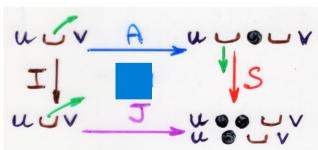
$$JS = SJ + SI_{h}$$

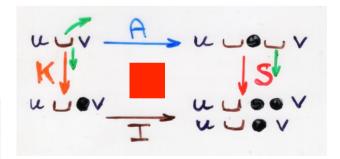
$$JK = KJ$$

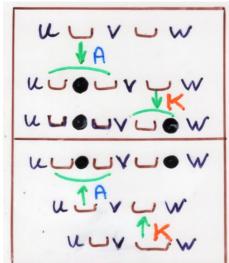
$$AI_{\vee} = I_{\vee}A$$
 $JI_{\vee} = I_{\vee}J$
 $I_{h}S = SI_{h}$
 $I_{h}K = KI_{h}$

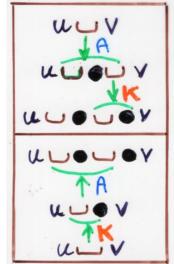


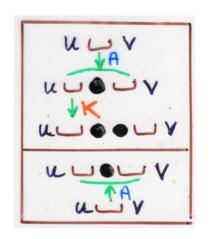


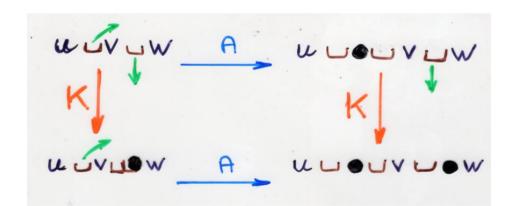


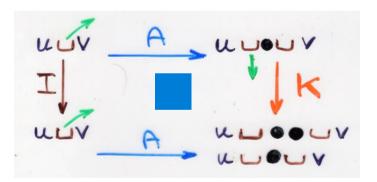


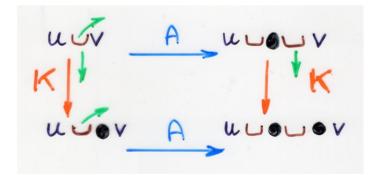


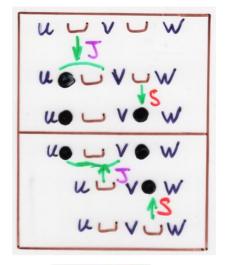


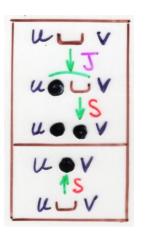


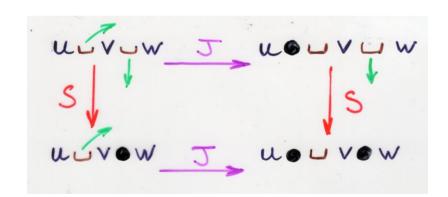


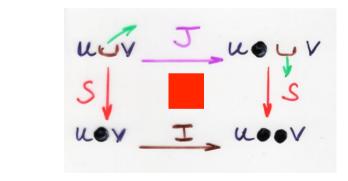


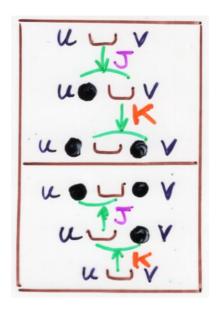


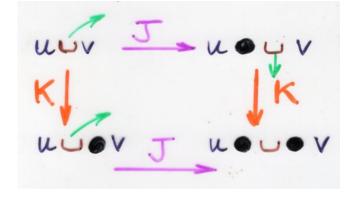












commutation diagrams bijections

analogy with commutation diagrams bijection for the representation of the Weyl-Heisenberg algebra (Ch2)

"commutation diagrams"

$$p, m, p', m'$$
 are "positions"

in ν, ρ, ν, λ respectively

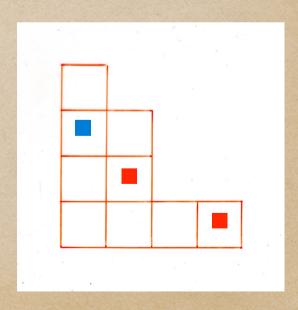
the bijection

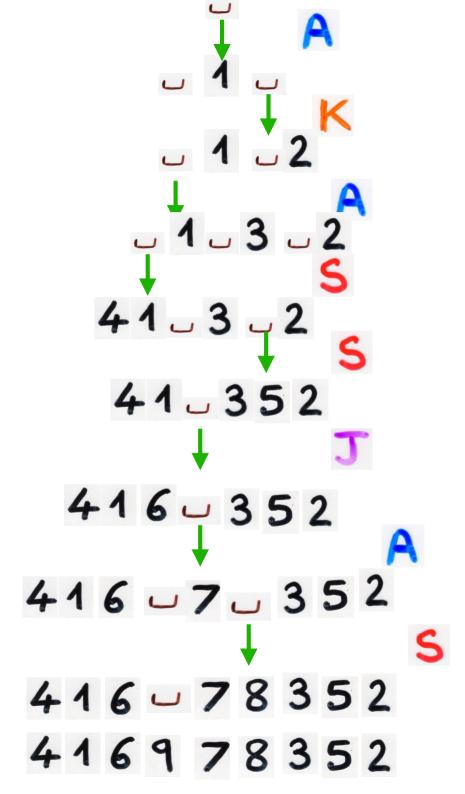
permutations — alternative tableaux

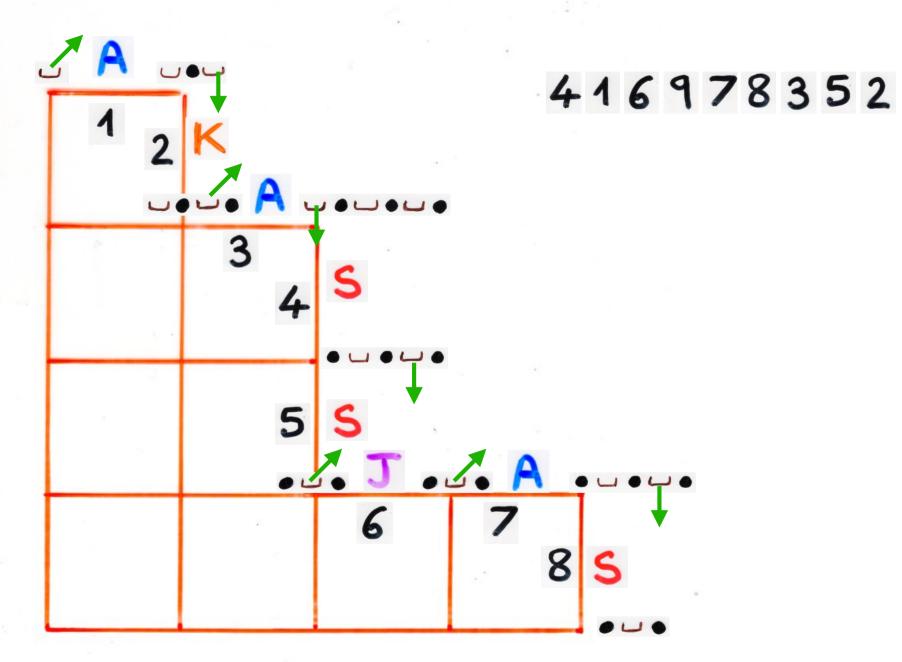
(Laguerre histories)

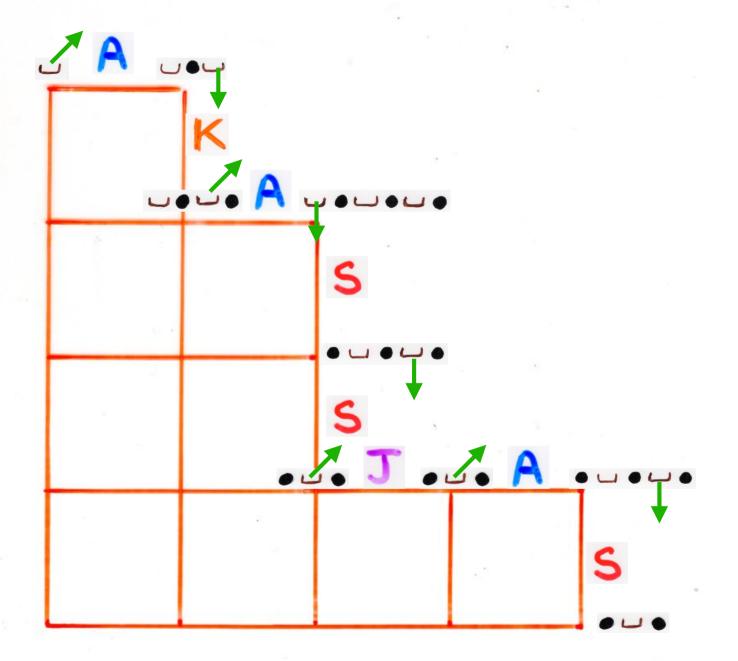
with local rules (commutation diagrams)

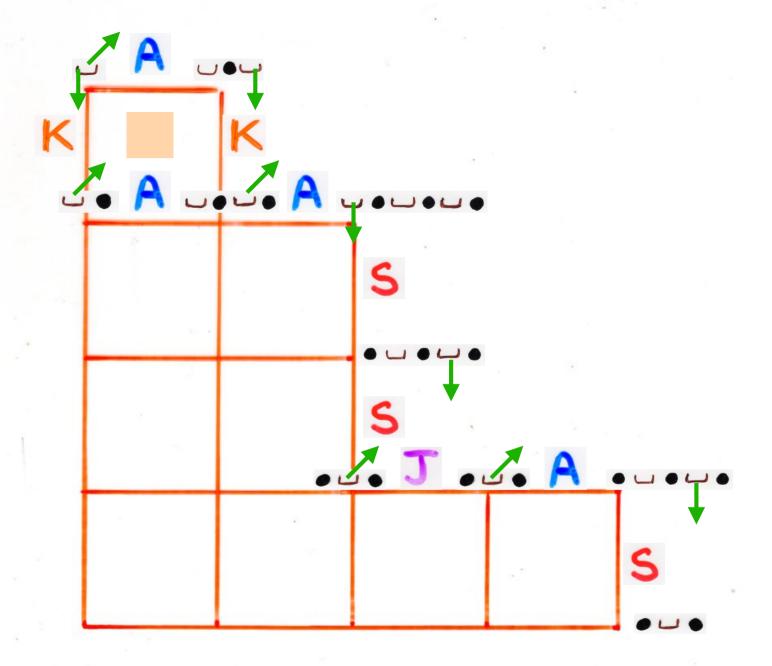
416978352 ----

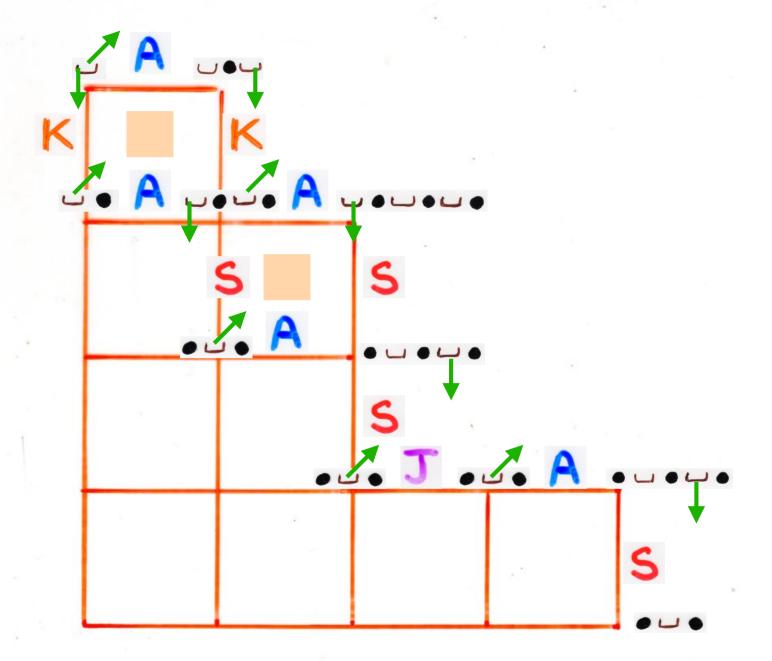


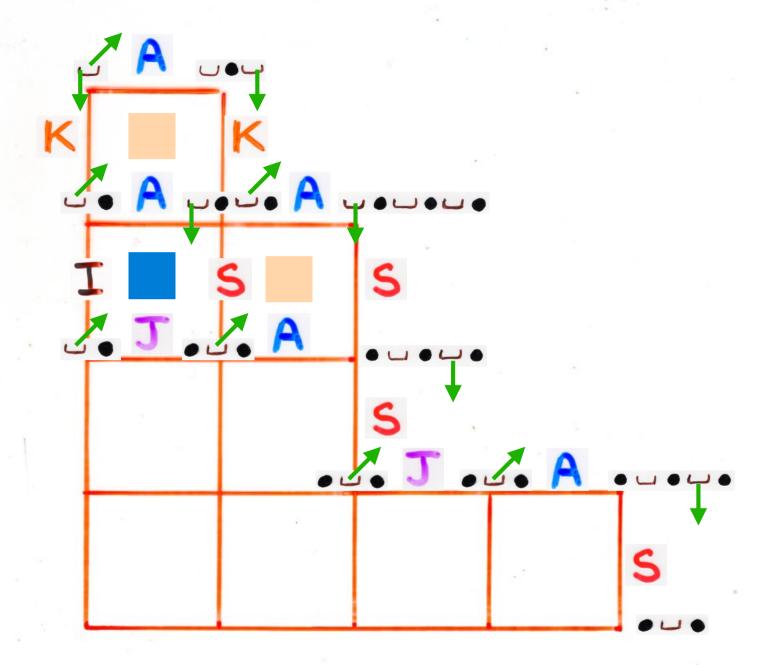


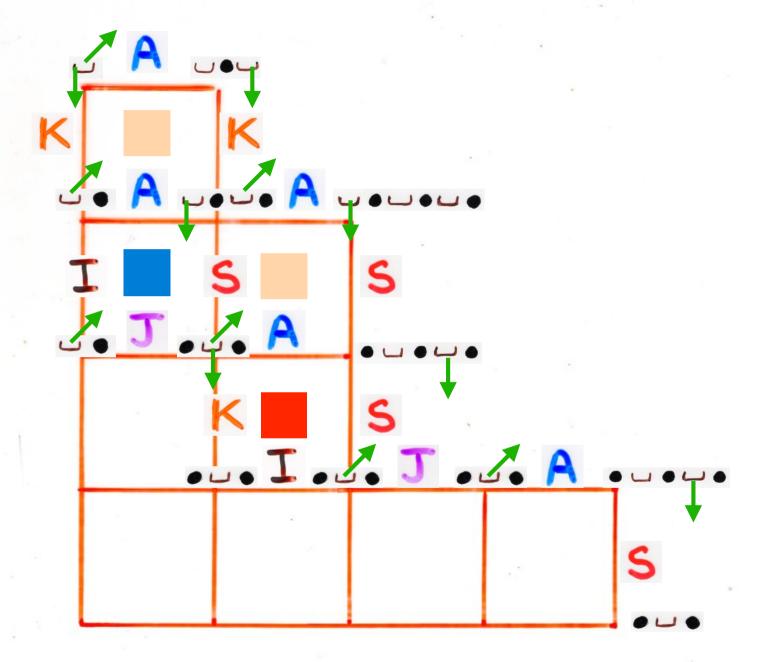


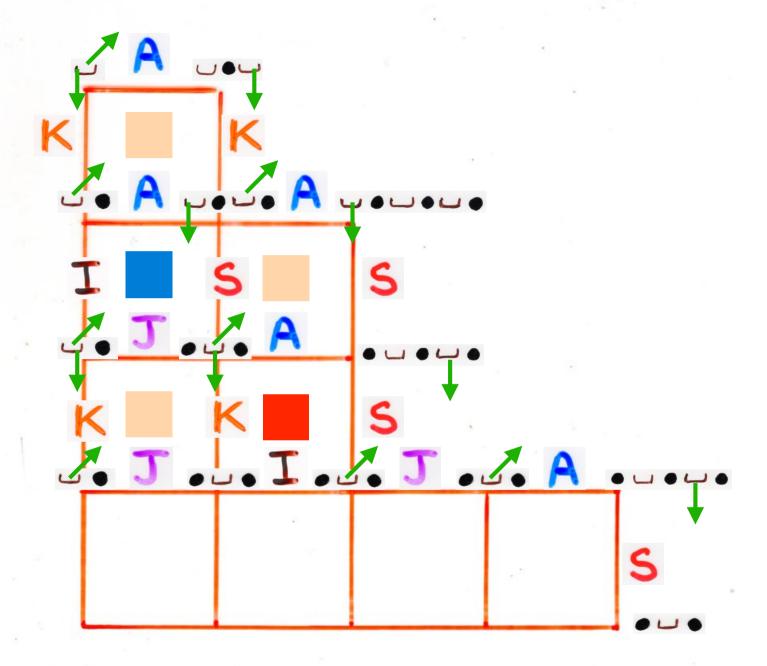


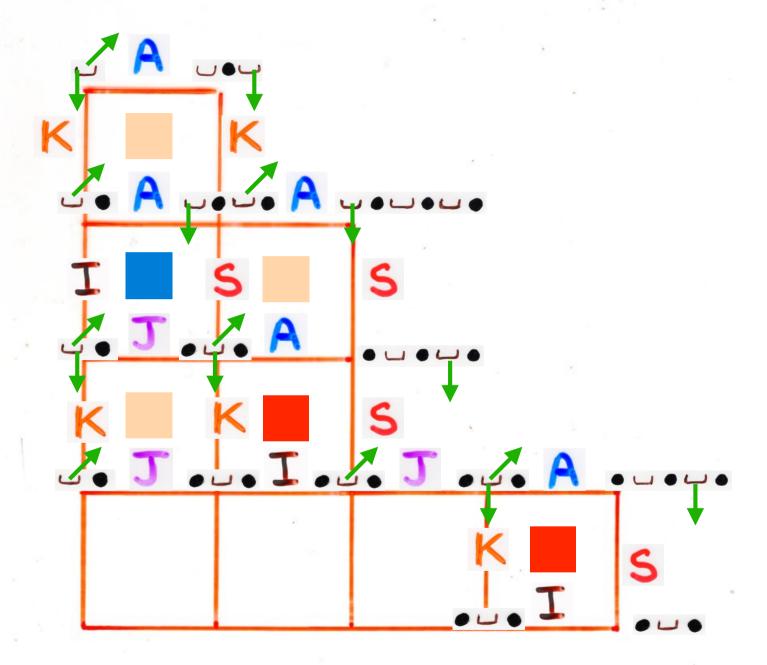


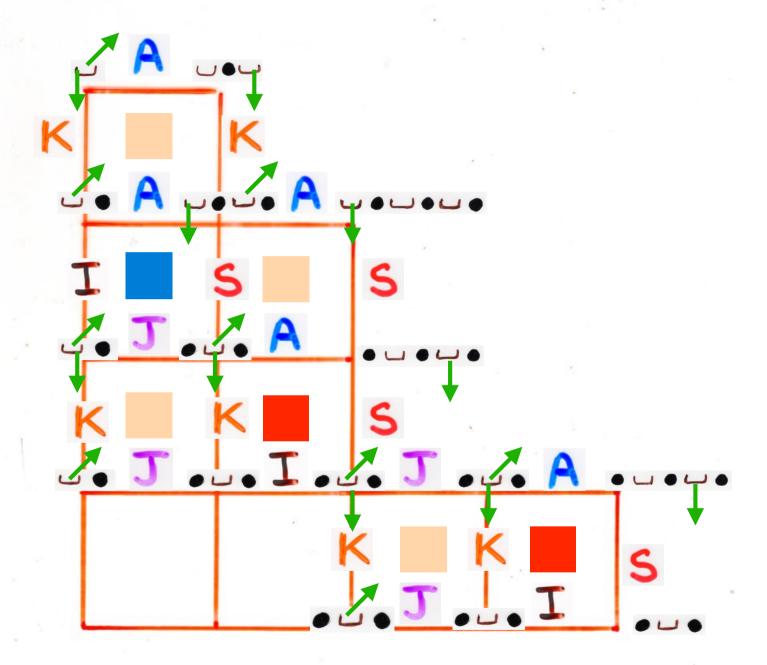


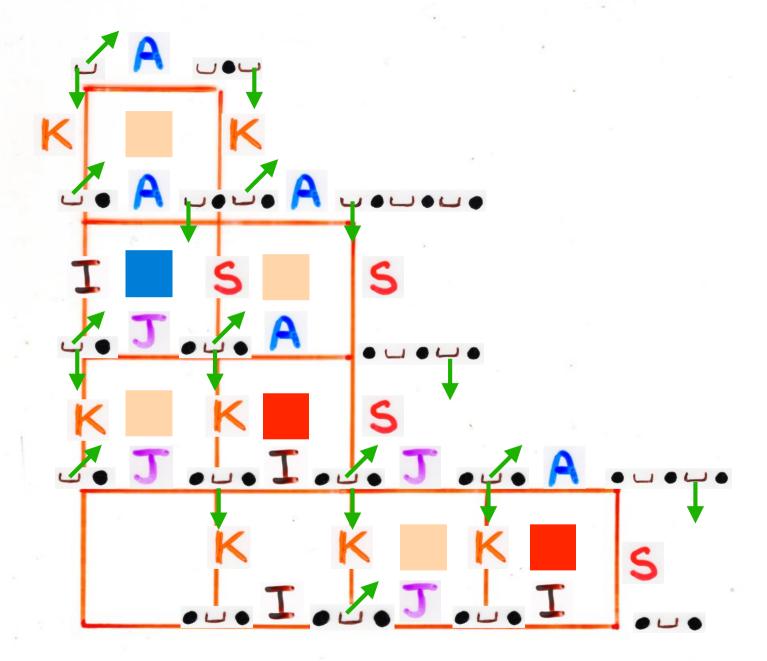


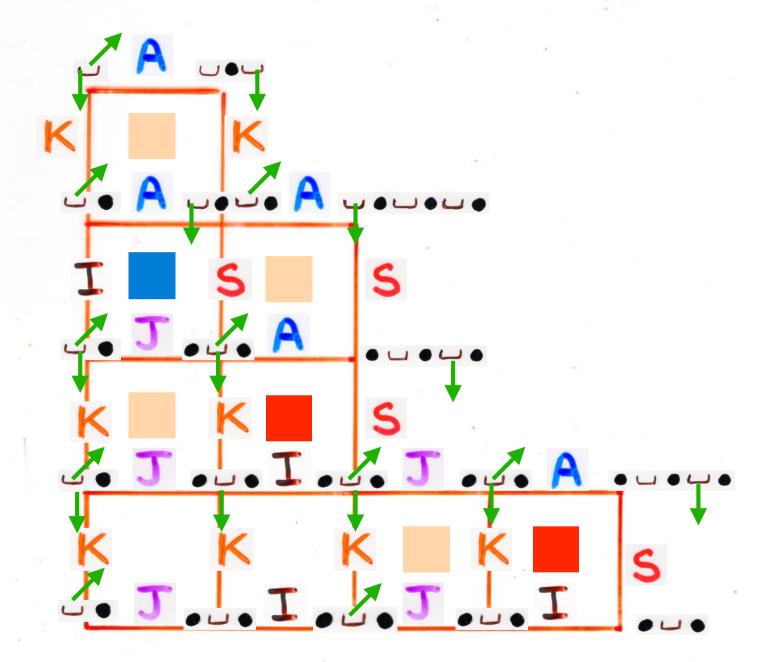


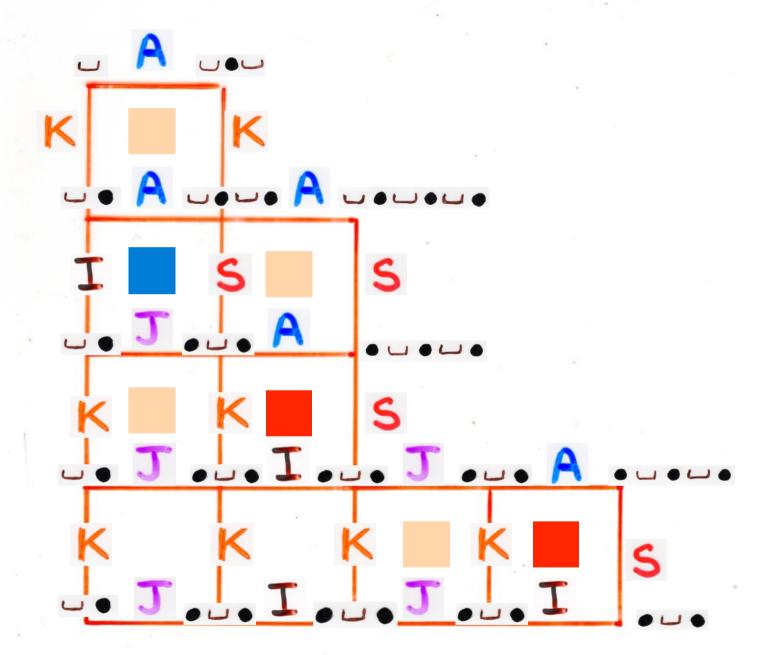


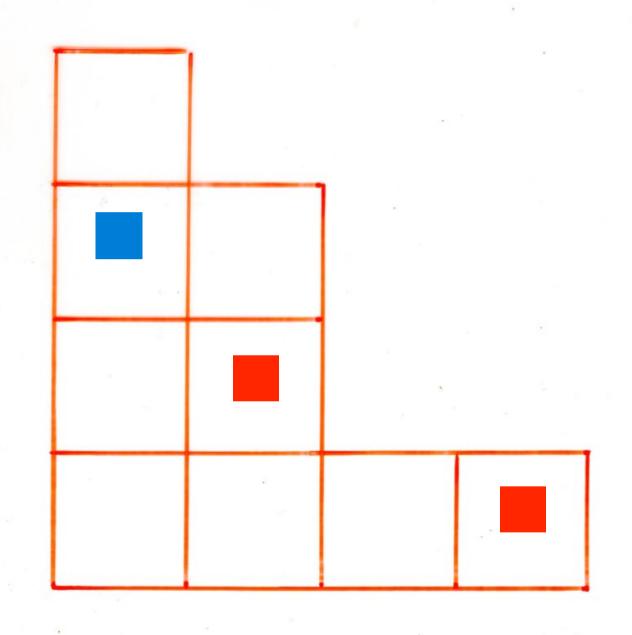










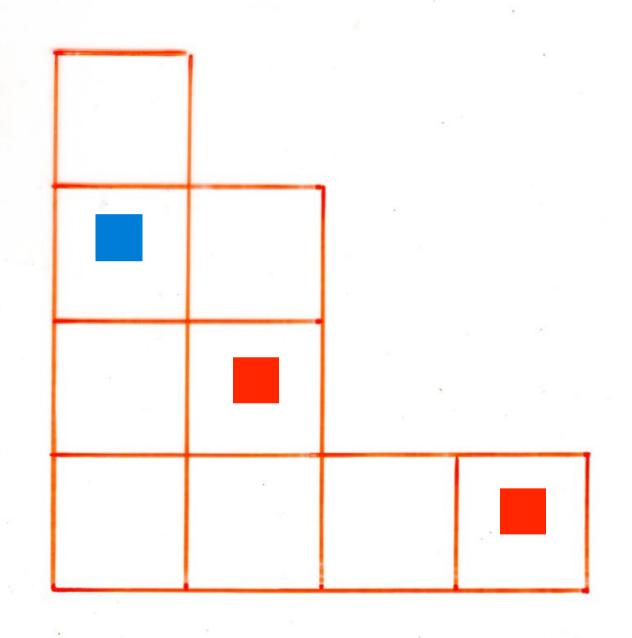


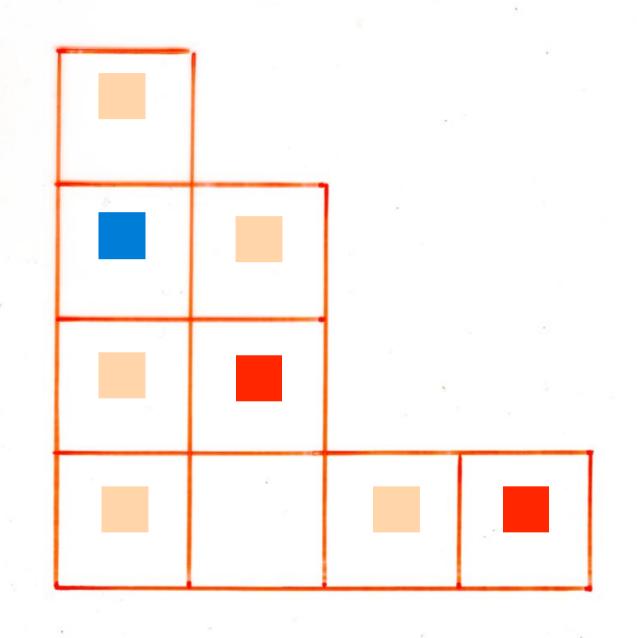
the reverse bijection

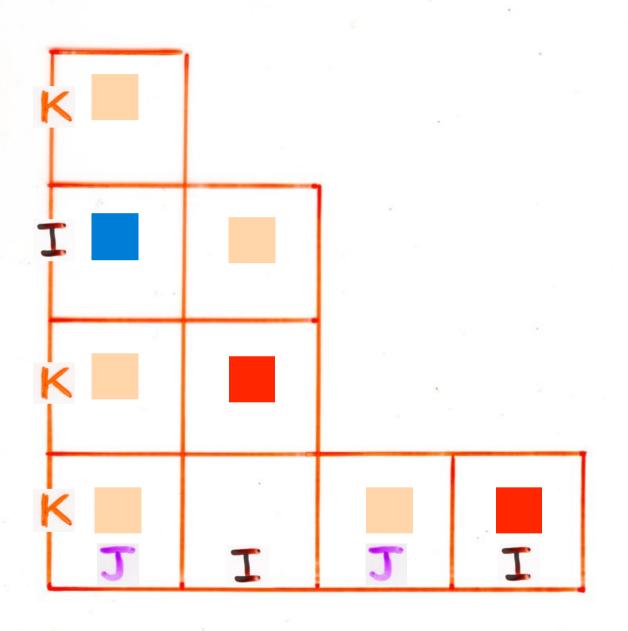
permutations — alternative tableaux

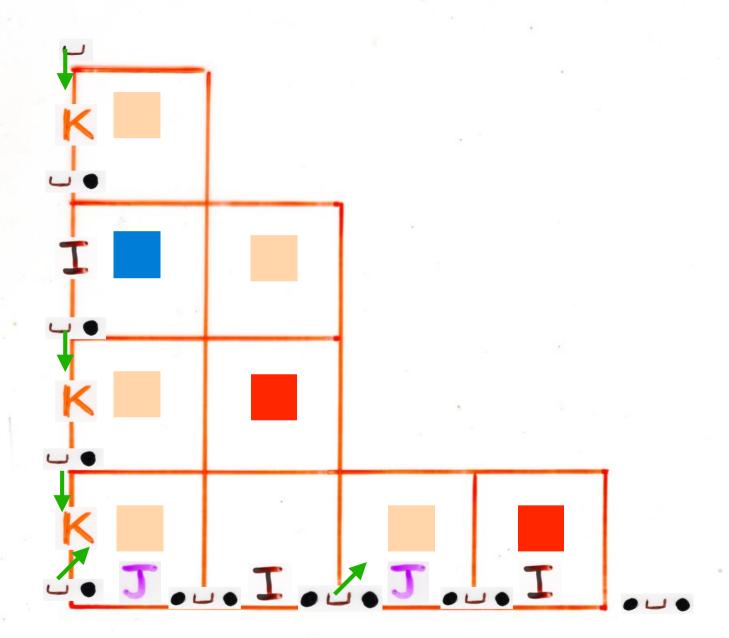
(Laguerre histories)

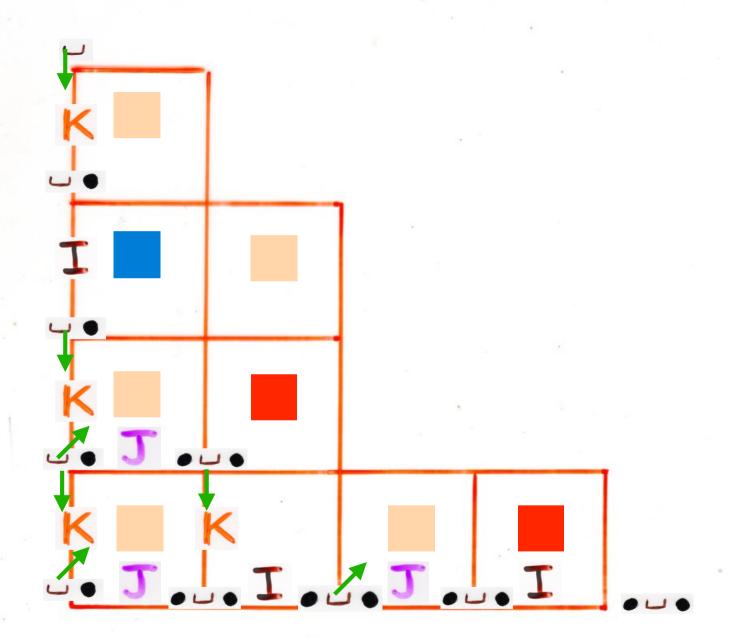
local rules (commutation diagrams)

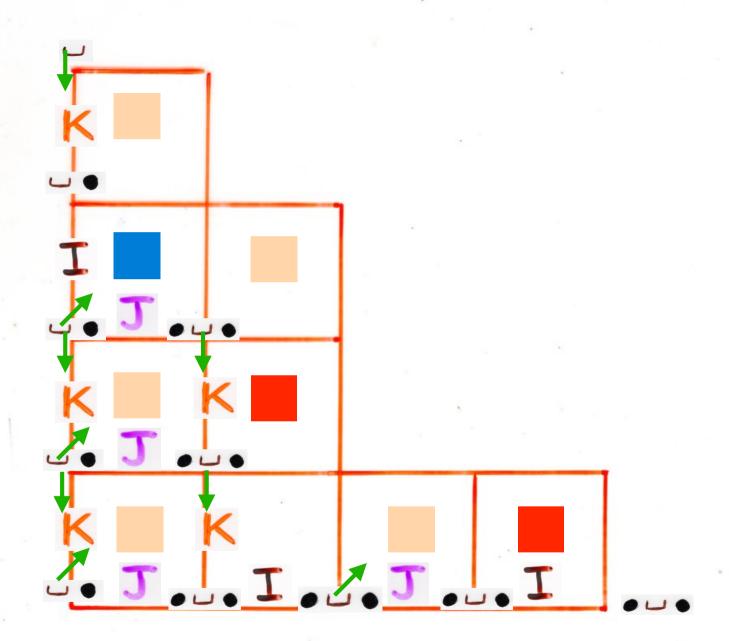


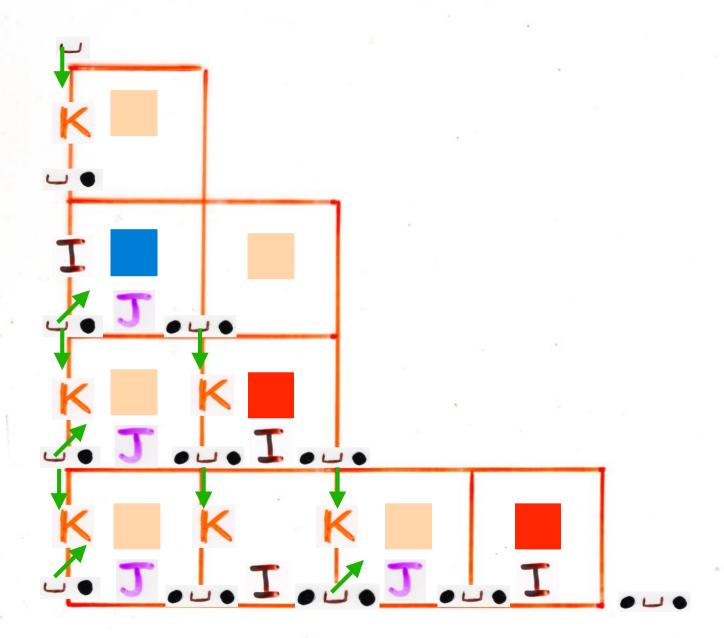


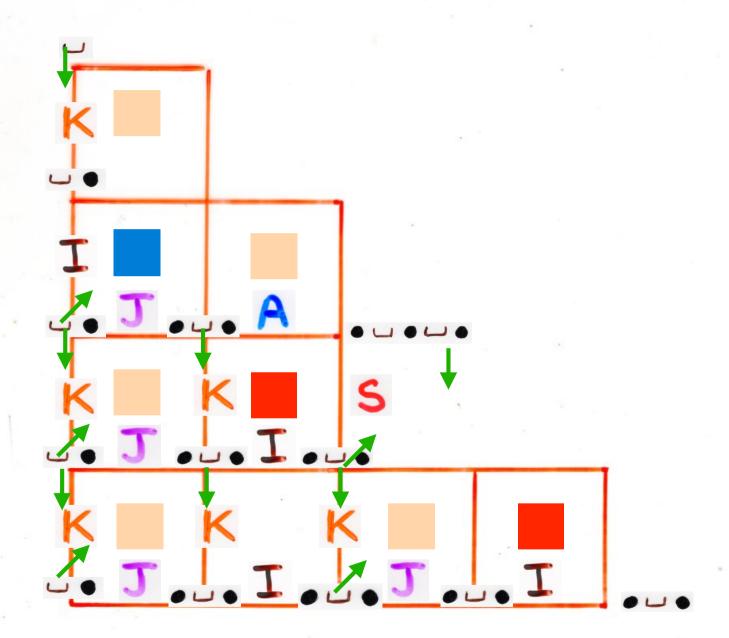


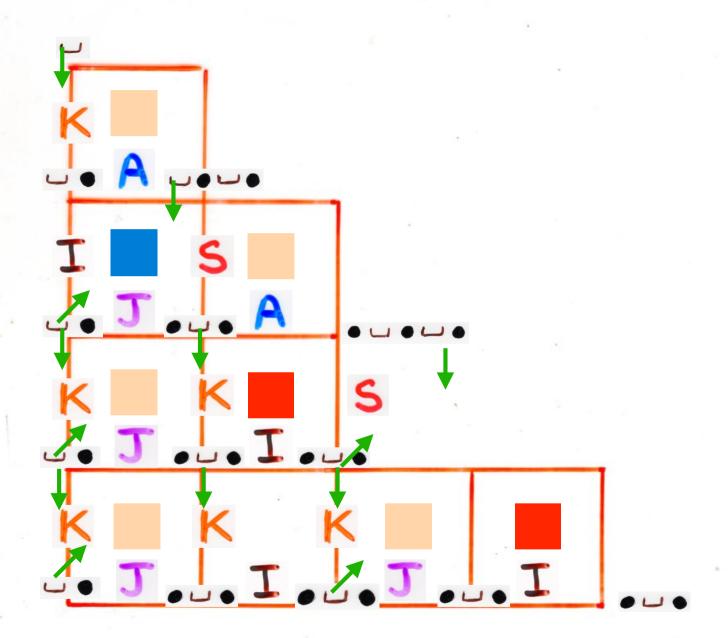


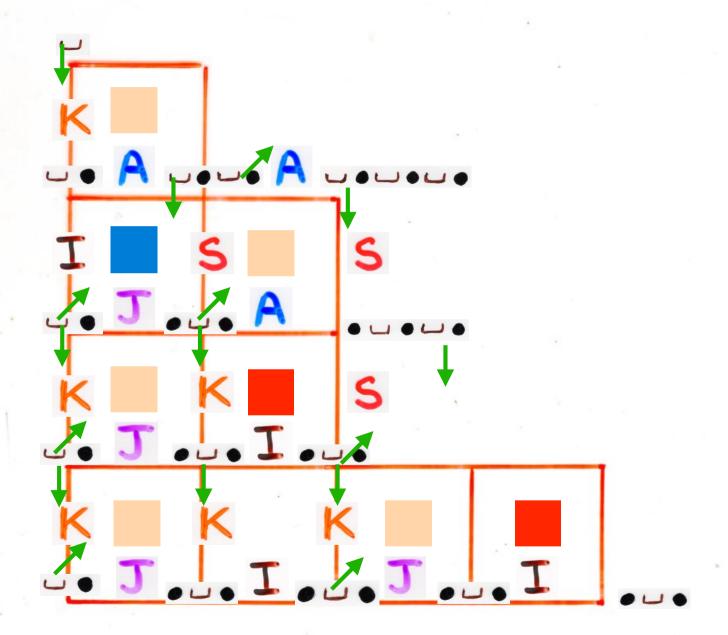


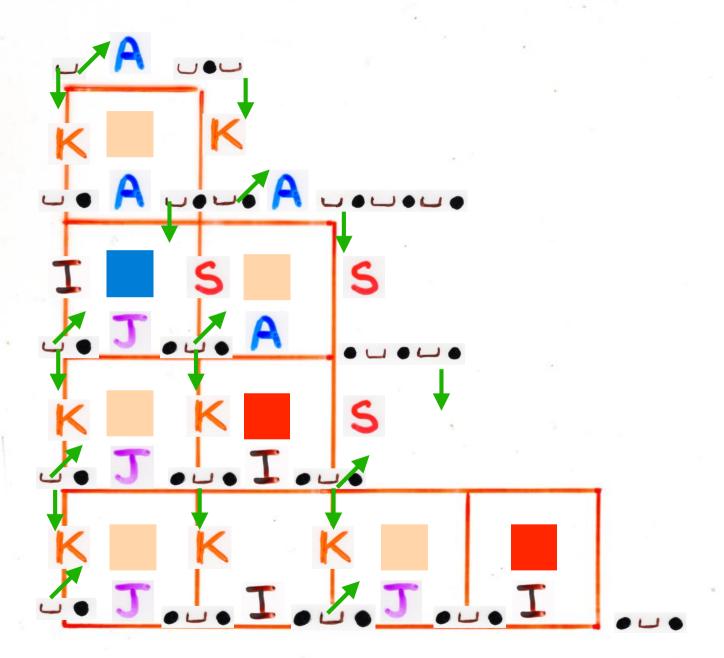


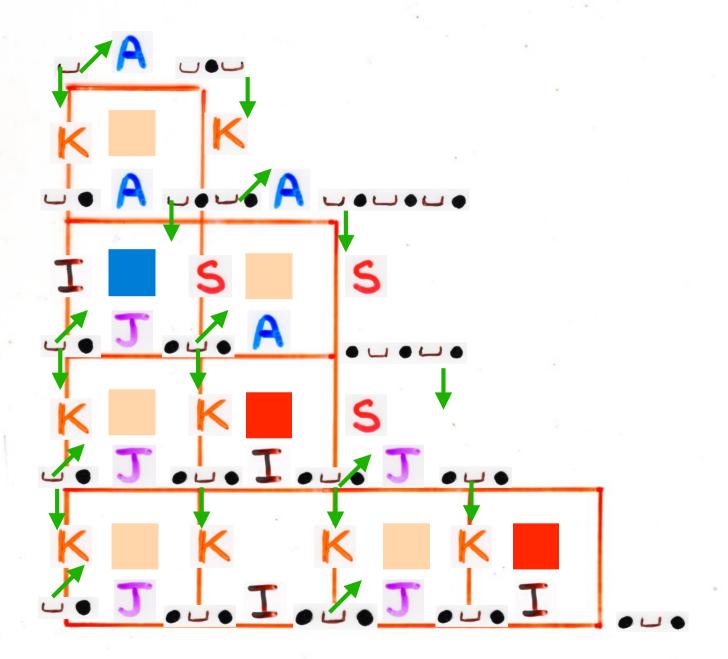


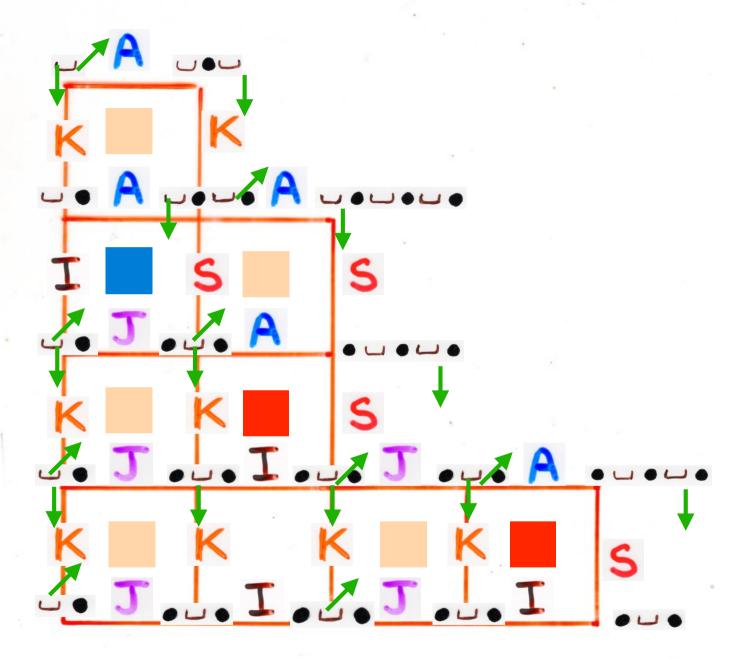


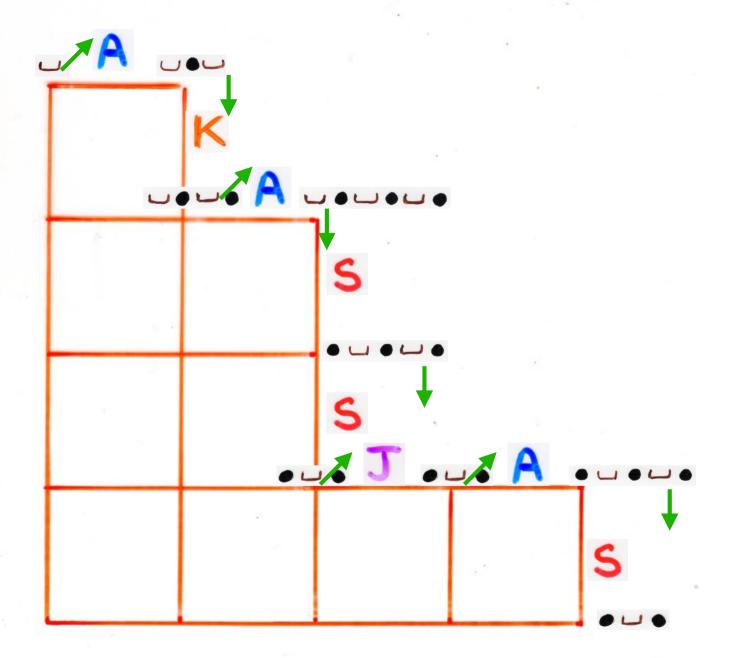


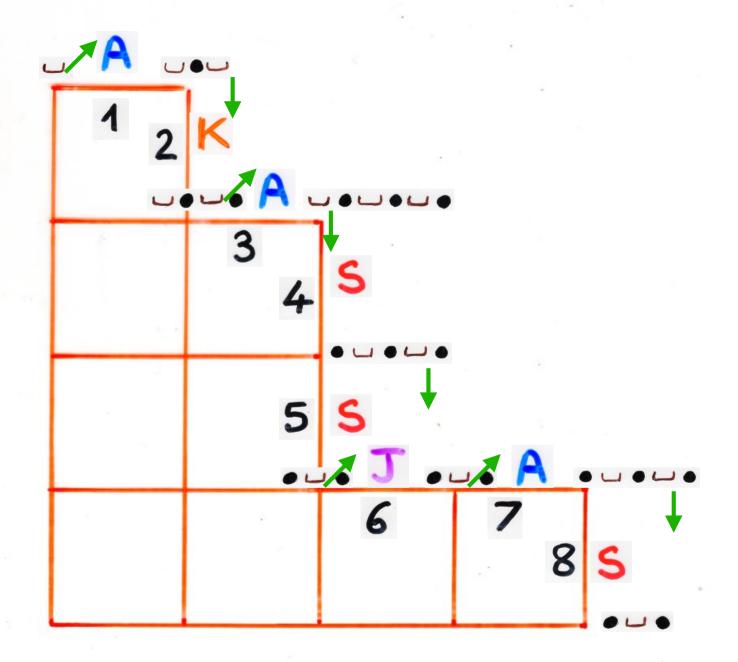


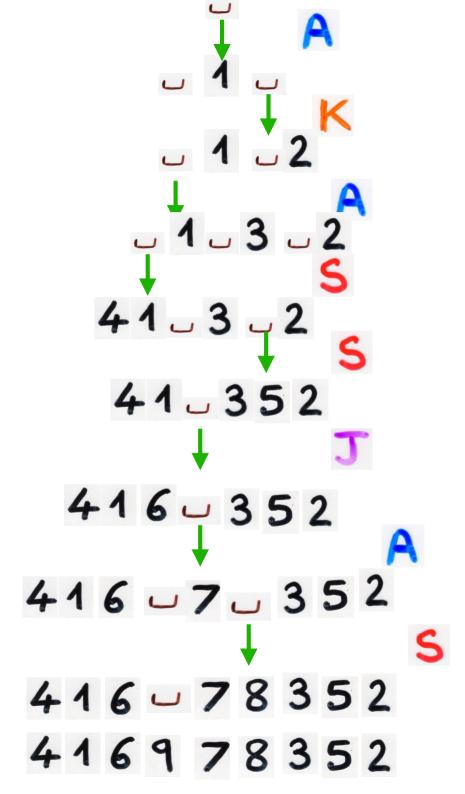












two bijections one theorem

Prop.

The alternative sexchange - fusion to talleau inverse algorithm

local to algorithm

from DE = ED + E + D

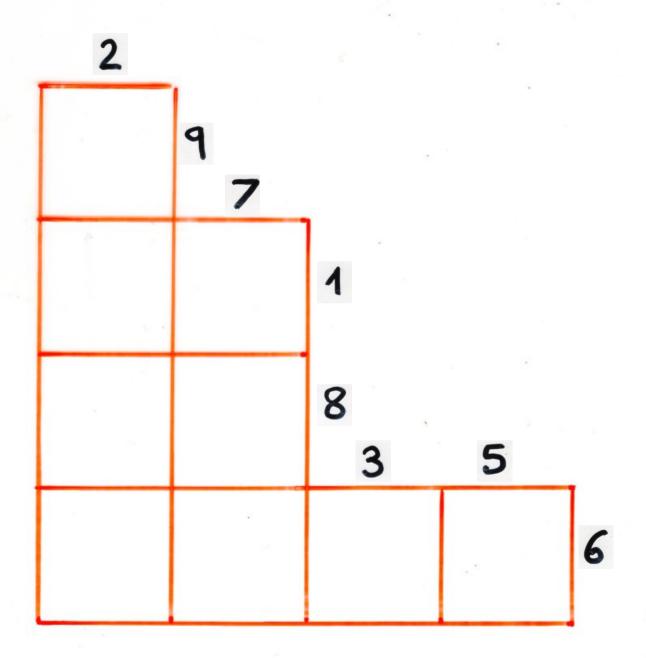
exchange-delelete algorithm

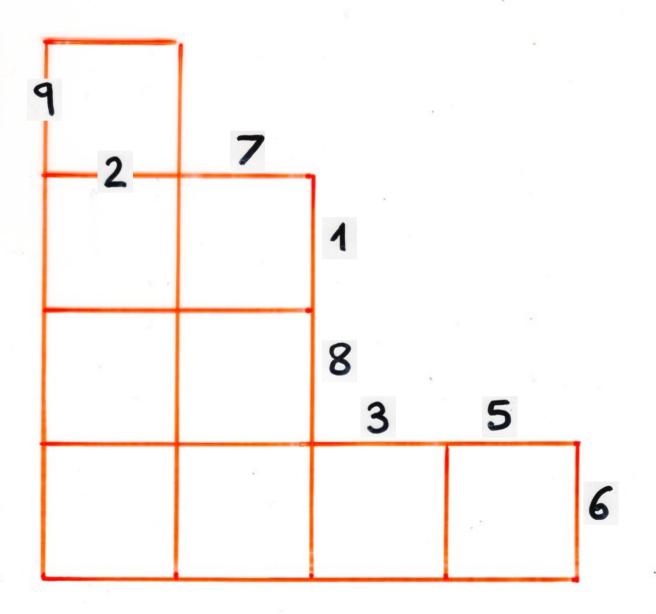
with the inverse permutation

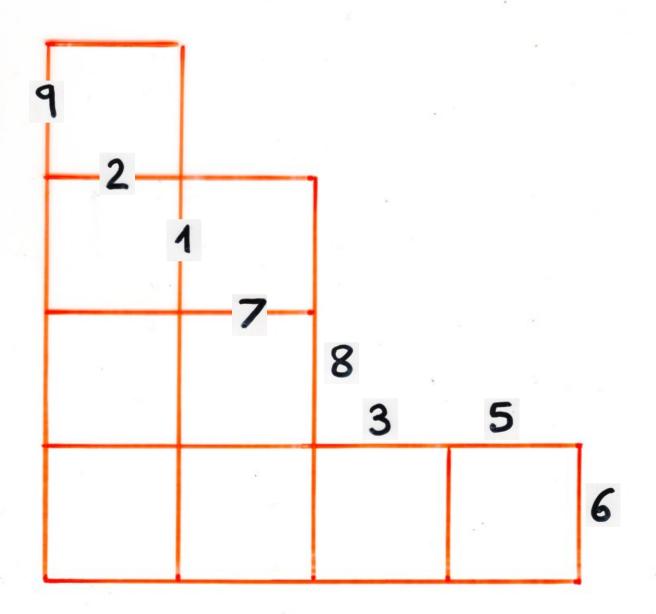
416978352

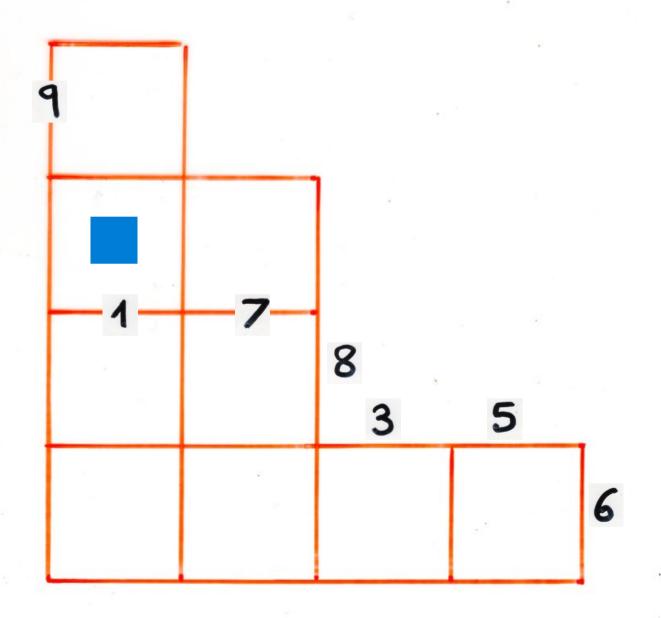
297183564

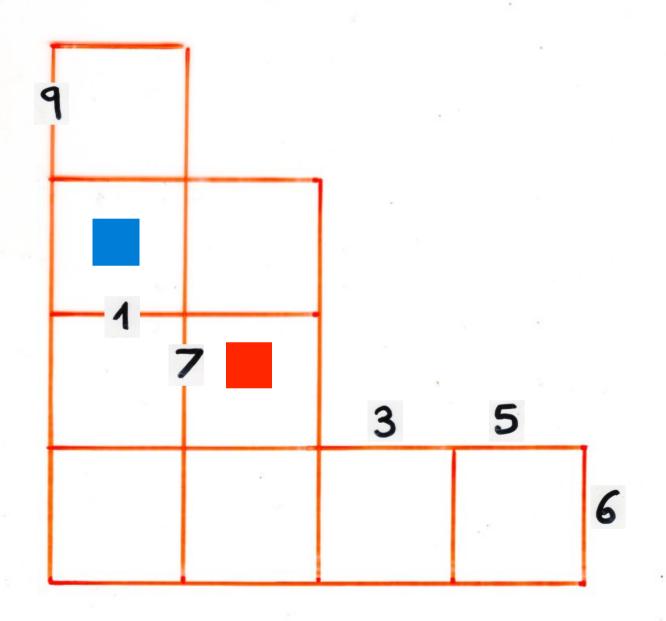
(with a variant: keep the min instead of the max)

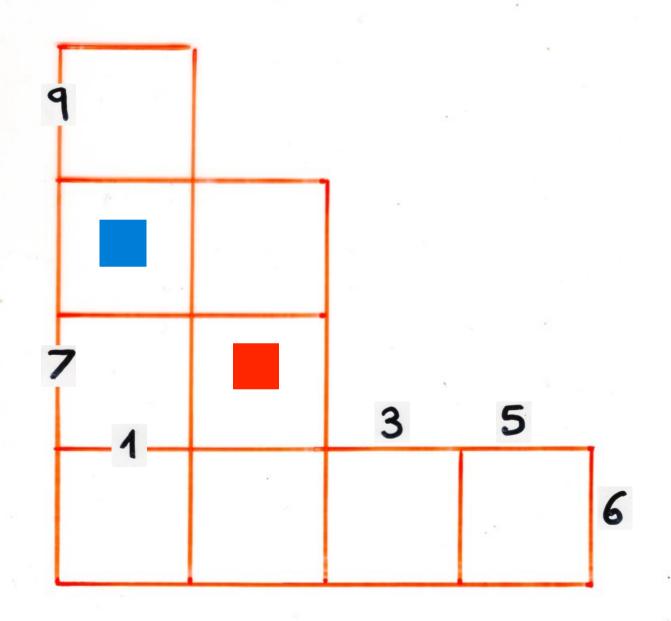


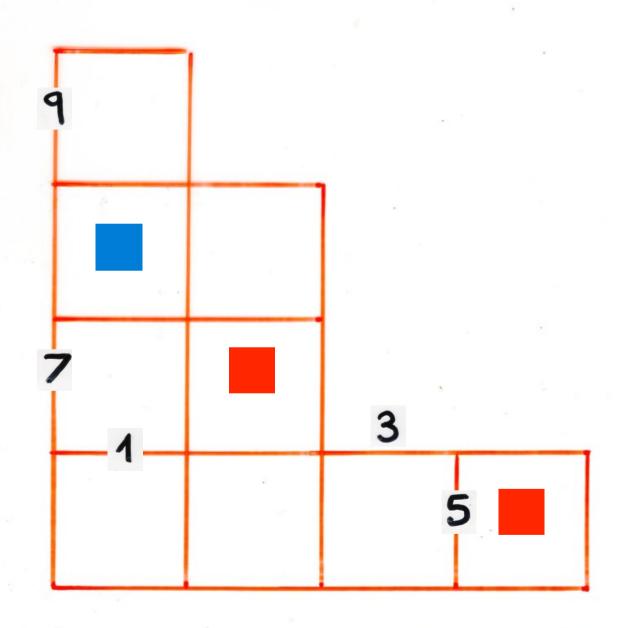


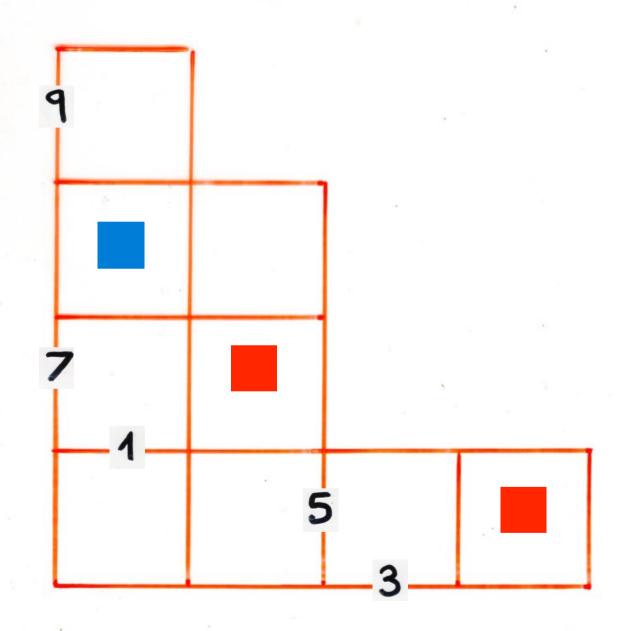


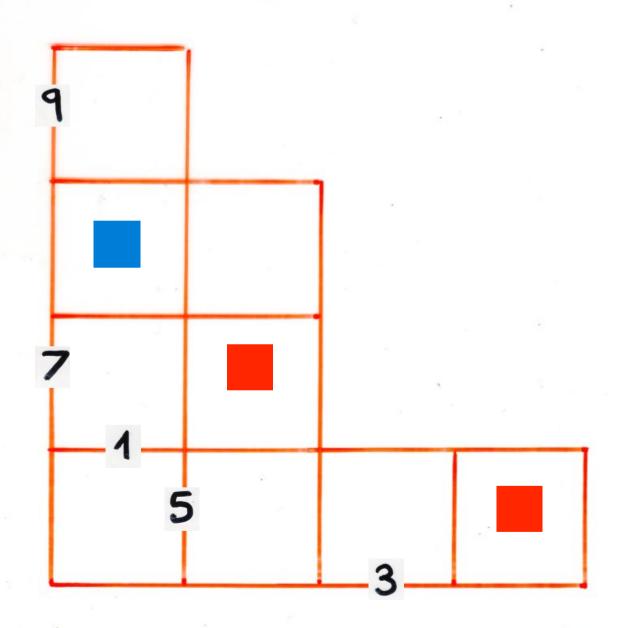


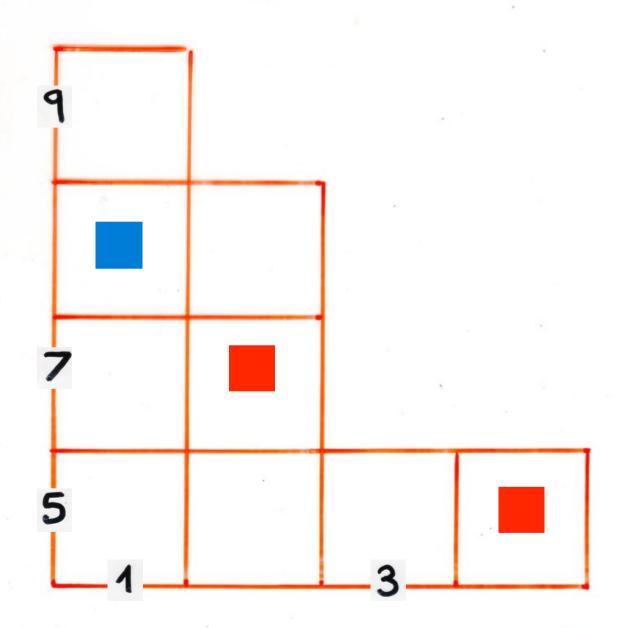


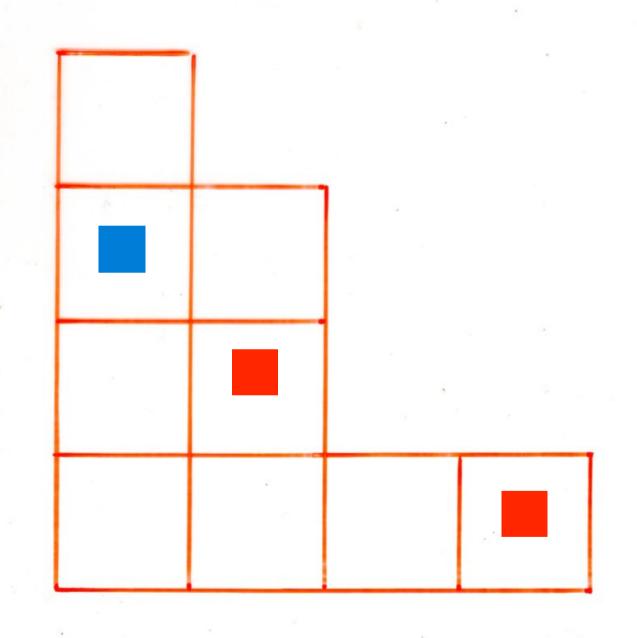




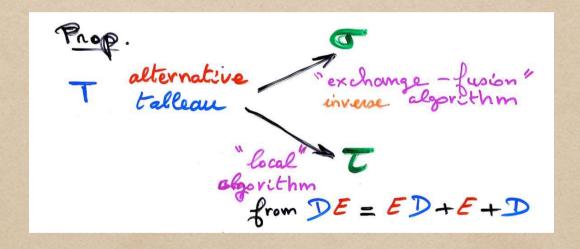








proof of the main theorem



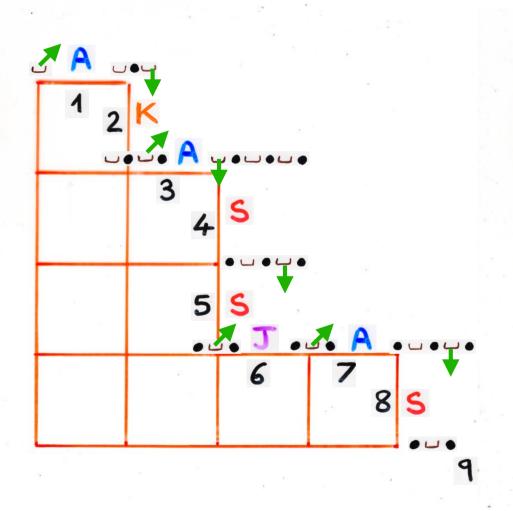
Proof of the equivalence

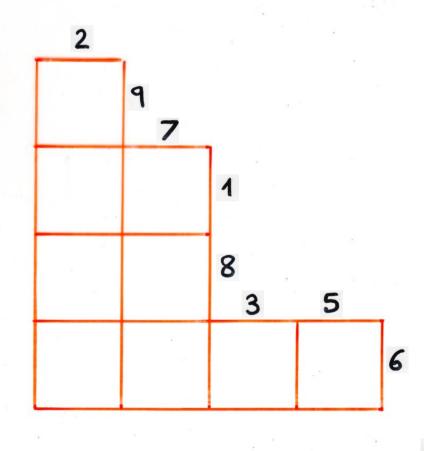
local rules (commutation diagrams) and Laguerre histories

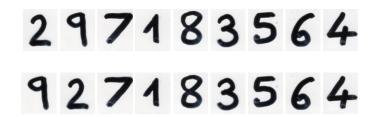
exchange-fusion (or exchange-delete) algorithm

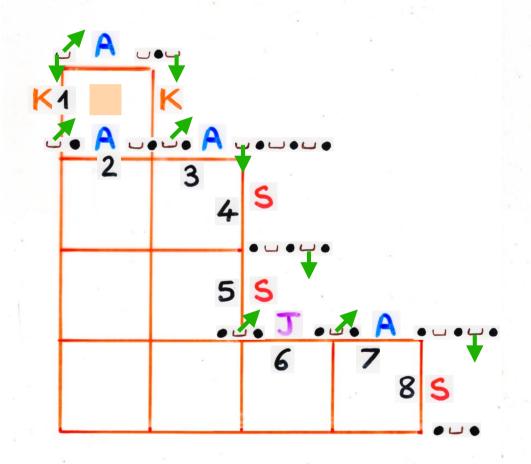
416978352

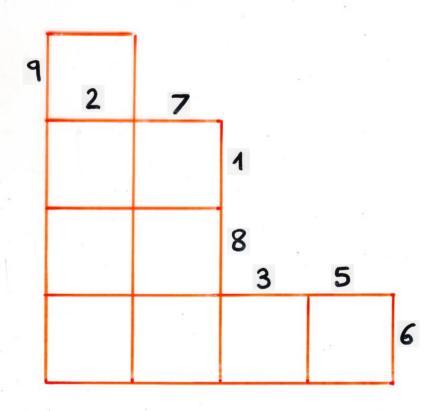
297183564

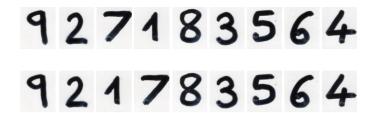


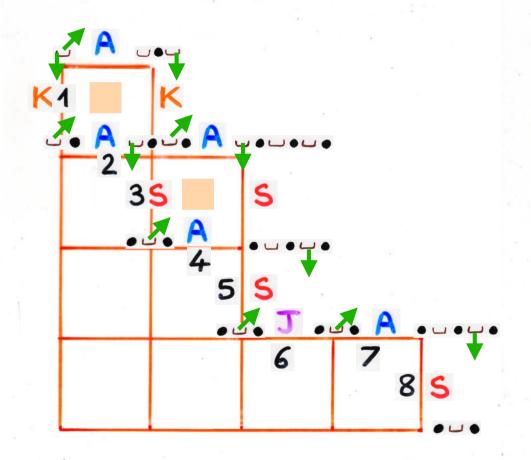


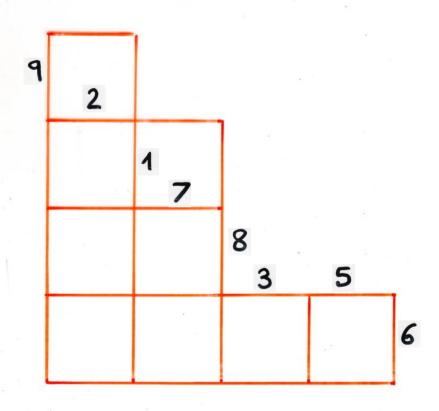




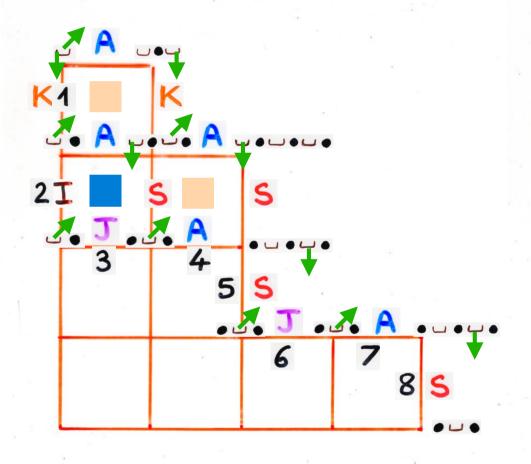


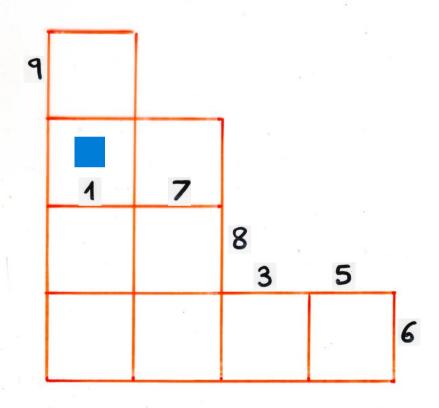




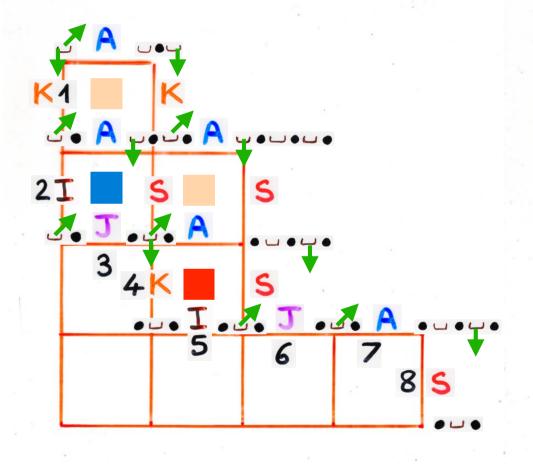


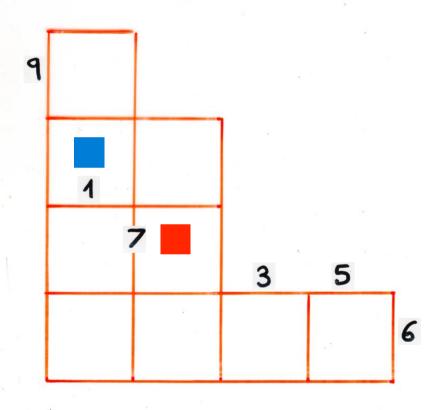
3 2 6 9 7 8 4 5 1





3 6978451 3 69784 1





3 6978451 4 69783 1

