Course IMSc, Chennaí, Indía January-March 2018 The cellular ansatz: bijective combinatorics and quadratic algebra

Xavier Viennot
CNRS, LaBRI, Bordeaux
www.viennot.org
mirror website
www.imsc.res.in/~viennot

Chapter 1 RSK

The Robinson-Schensted-correspondence

 (chic)IMSc, Chennaí
January 18, 2018

Xavier Viennot
CNRS, LaBRI, Bordeaux
www.viennot.org
mirror website
www.ímsc.res.ín/~viennot

From Chla, lb:
The Robinson-Shensted correspondence

- Schensted's insertions
- geometric version with "shadow lines"
- Fomín "local rules" or "growth diagrams»

$$
\begin{aligned}
& \sigma=\left(\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
3 & 1 & 6 & 10 & 2 & 5 & 8 & 4 & 9 & 7
\end{array}\right) \\
& P
\end{aligned}
$$

The Robinson-Schensted correspondence betwen permutations and pairs of (standard) Young tableaux with the same shape

"local rules"

$$
\lambda=\nu
$$

$$
\lambda=\mu
$$

$$
\lambda=\mu U \nu
$$

$$
\lambda=p
$$

$$
\lambda=\left\{\begin{array}{l}
\mu \\
\mu
\end{array}+(i+1)\right.
$$

"The cellular ansatz."

(i) first step
(ii) second step
commutations
rewriting rules
planarization
$U D=D U+I_{d}$
commutations

Lemma Every word w with letters U and D can be written in a unique way

$$
w=\sum_{i, j \geqslant 0} c_{i j}(w) D^{i} U^{j}
$$

The monomials $\left\{D^{i} \cup^{j}\right\}_{l i j \geqslant 0}$ form a basis of the

Weyl-Heisenbery algebra

$$
Q=\mathbb{C}\langle U, D\rangle / J
$$

non-commutative polynomials in variable U and D (free associative algebra)

J ideal generated by the relation $U D=D U+I$

$$
\begin{gathered}
U D=D U+I_{d} \\
U D \rightarrow D U \quad U D \rightarrow I_{d}
\end{gathered}
$$

commutations
rewriting rules

UUDD

$$
\begin{aligned}
U \cup D D & =U D U D+U D \\
& =D \cup U D+2 U D \\
& =(D \cup D U+D U)+2\left(D U+I_{d}\right) \\
& =(D D \cup U+2 D U)+2\left(D U+I_{d}\right) \\
& =D D U U+4 D U+2 I_{d}
\end{aligned}
$$

$$
U^{2} D^{2}=D^{2} U^{2}+4 D U+2 I
$$

this polynomial is independent of the order of the substitutions

$$
U^{n} D^{n}=\sum_{0 \leqslant i \leqslant n} c_{n, i} D^{i} U^{i}
$$

$$
c_{n, 0}=n!
$$

permutations

Planarization of the rewriting rules

$$
\begin{array}{ll}
U D=D U+I_{d} & \text { commutations } \\
U D \rightarrow D U \quad U D \rightarrow I_{d} & \text { rewriting rules }
\end{array}
$$

planarization of the rewriting rules

homogenization of the system of commutations

$$
\left\{\begin{array} { l }
{ U D = D U + I _ { v } I _ { h } } \\
{ U I _ { v } = I _ { v } U } \\
{ I _ { h } D = D I _ { h } } \\
{ I _ { h } I _ { v } = I _ { v } I _ { h } }
\end{array} \quad \left\{\begin{array}{l}
U D \rightarrow D U \\
U I_{v} \rightarrow I_{v} U \\
I_{h} D \rightarrow D I_{h} \\
I_{h} I_{v} \rightarrow I_{v} I_{h}
\end{array} \quad\right.\right. \text { rewriting rules }
$$

"planarization" of the "rewriting rules"

$\stackrel{I_{h}}{\sum_{v}} \rightarrow I_{v}$

$$
\left\{\begin{array}{l}
U D=D U+I_{v} I_{n} \\
U I_{v}=I_{v} U \\
I_{n} D=D I_{n} \\
I_{n} I_{v}=I_{v} I_{n}
\end{array}\right.
$$

$$
U D=q D U+I
$$

"complete" Q-tableau

I_{n}

$$
\left\{\begin{array}{l}
U D=D U+I_{v} I_{n} \\
U I_{v}=I_{v} U \\
I_{n} D=D I_{n} \\
I_{n} I_{v}=I_{v} I_{n}
\end{array}\right.
$$

Q - 'atlean

I_{n}

$$
\| I_{v} \rightarrow I_{v} \frac{\square}{I_{h}}
$$

permutation
as a Q-tablean

q-analog

number
inversion of
of a permutation σ
"complete"

- tableau

$$
\left\{\begin{array}{l}
U D=D U+I_{v} I_{n} \\
U I_{v}=I_{v} U \\
I_{n} D=D I_{n} \\
I_{n} I_{v}=I_{v} I_{n}
\end{array}\right.
$$

Q - 'tableau

I_{n}

$$
\left\lvert\, I_{v} \rightarrow I_{v} \frac{\square}{I_{h}}\right.
$$

another Q-tableau Roth diagram of a permutation

Definition $w(U, D)$ word of $\{U, D\}^{*}$ complete Q-tableau

- labeling of the cells of a Firers diagram
$F=F(w)$ by the set R of
rewriting rules
- with "compatibility" adeyacent cells
ie.

$$
\begin{gathered}
A, A^{\prime}, B, B^{\prime} \in\left\{\begin{array}{c}
\prime \\
A^{\prime \prime}, B^{\prime \prime}
\end{array}\right. \\
\left.B, I_{v}, I_{h}\right\} \\
B
\end{gathered}
$$

then $A^{\prime}=A^{\prime \prime}, \quad B^{\prime}=B^{\prime \prime}$

- If the cell $A^{\prime} A^{\prime} A$ is at the $N E$ border of \bar{F}, then $B=U, A=D$

here 5 terms
L a set of "label"
(for the cell of $[n] \times[n]$)
examples

$$
L=\{\square, \square\}
$$

examples
$L=\{\square, \square\}$
φ satisfies $(*)$:
(*) if $\varphi(\alpha \rightarrow \beta)=\varphi\left(\alpha^{\prime} \rightarrow \beta^{\prime}\right)$
then $\alpha \neq \alpha^{\prime}$
i.e. in a a single commutation equation

$$
\alpha=\beta_{1}+\ldots+\beta_{r}
$$

all elements $\varphi\left(\alpha \rightarrow \beta_{i}\right) \in L_{\text {set of }}$ are \neq set of

$$
\left\{\begin{array}{l}
U D=D U+I_{v} I_{h} \\
U I_{v}=I_{v} U \\
I_{h} D=D I_{h} \\
I_{h} I_{v}=I_{v} I_{h}
\end{array}\right.
$$

if $\varphi: R \rightarrow L$
satisfies (*)
then

$$
\begin{aligned}
& \text { complete } \\
& Q \text {-tableau } \widetilde{x}
\end{aligned} Q \text {-tableaux }
$$

$$
\begin{aligned}
& \varphi: \begin{array}{l}
U D \rightarrow D U, U I_{v} I_{v} \cup, \\
I_{h} D \rightarrow D I_{n}, I_{h} I_{v} \rightarrow I_{v} I_{n}
\end{array} \rightarrow \underbrace{\square}_{\begin{array}{c}
\text { empty } \\
\text { cell }
\end{array}} \\
& U D \rightarrow I_{v} I_{h}, U I_{v} I_{v} U, \\
& \varphi: I_{h} D \rightarrow D I_{n}, I_{h} I_{\rightharpoonup} \rightarrow I_{v} I_{n} \rightarrow \underbrace{\square}_{\begin{array}{c}
\text { empty } \\
\text { cell }
\end{array}} \\
& \varphi\left(U D \rightarrow I_{v} I_{h}\right)=\square \\
& \varphi(U D \rightarrow D U)=\square
\end{aligned}
$$

"The cellular ansatz."

$$
U D=D U+I d
$$

(i) first step
commutations
rewriting rules
planarization

$$
\begin{aligned}
& w=D U^{3} D^{2} U^{2} D U^{2} \\
& w \longrightarrow F=F(w)
\end{aligned}
$$

F Ferrers

Rooks placement

The cellular ansatz second part:

guided construction

 of a bijectionfrom the representation of U and D
$U D=D U+1$
"The cellular ansatz."

quadratic
algebra

$$
U D=D U+I d
$$

combinatorial objects on a 2D lattice
permutations towers placements
(i) first step
(ii) second step
commutations
rewriting rules
planarization
notations opevator U_{i}

$$
D_{j}(\rho)=p-(j)
$$

$$
\begin{aligned}
& U=\sum_{i \geqslant 1} U_{i} \quad D=\sum_{i \geqslant 1} D_{i}
\end{aligned}
$$

$$
\begin{aligned}
& U \boxplus=⿴_{i}+\boxplus+B
\end{aligned}
$$

operators
U and D

Young lattice
$\begin{cases}U & \text { adding } \\ D & \text { deleting a cell in a Firers } \\ \text { diagram }\end{cases}$

In this course, product of operators are written from left to night

$$
A B(\mu)=B(A(\mu))
$$

should be written $(\mu) A B$ or $<\mu \mid A B$
with operators witter from night to left

$$
B A(\mu)=B(A(\mu))
$$

$$
U D-D U=I \quad \text { becomes } \quad D U-U D=I
$$

田 $u=\#_{0}+$ 田 + 五
田 D＝田＋田

田 DU＝田＋田＋+ 田＋田

田 $u=⿴_{0}+$ 田＋\＃
田 D＝田＋

田（UD－DU）$=$ 田

田 U $=$ 田 + 田＋田
田 D＝田＋田

田（UD－DU）＝ B^{2}

田 $u=\#_{0}+$ 田 + 田
田 D＝田＋田

田（UD－DU）＝母

$U D=D U+I$

$U D=D U+I$

differential poset
Fomin (1992,1995)
Stanley (1988, 1990)
Roby (1991)

$$
U D=D U+I
$$

Uup D down
direct proof of the identity

$$
\begin{aligned}
& U D=D U+I \\
& \langle\phi| U^{n} D^{n}|\phi\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =c_{n, 0}=n!
\end{aligned}
$$

$c_{n, 0}=n!$
$=\sum_{\lambda}\left(f_{\lambda}\right)^{2}$
partition of n
permutation as a Q-tablean
construction of the RSK correspondence by «propagation» on the grid of an elementary «diagram bijection» related to each cell of the grid

田 $u=\#_{0}+$ 田 + 田
田 D＝田＋田

田（UD－DU）＝母

$$
U D=D U+I_{v} I_{n}
$$

"commutation diagrams"

$p, m, p^{\prime}, m^{\prime}$ are "positions"
in ν, ρ, ν, λ respectively

\square $D \longrightarrow D$ \square $+I$ \square

$$
\nu \equiv p+(i)
$$

$$
\begin{aligned}
& y=p+(y) \\
& \mu=p+(j)
\end{aligned}
$$

$$
\begin{aligned}
& \mu=p+(j) \\
& \lambda=\rho+(i)+(j)
\end{aligned}
$$

(4)
(5)
(6)

For $w=w_{1} \cdots w_{n}$ word of $\left\{U, D, I_{n}, I_{v}\right\}^{*}$ we consider sequences h

$$
h=\left(\left(\mu_{1}, p_{1}\right), \ldots,\left(\mu_{n}, p_{n}\right), \mu_{n+1}\right)
$$

where $\mu_{i}, i=1, \ldots, n+1$ are partitions (Firers diagrams)
and for $i=1, \ldots, n \quad \mu_{i+1}$ is obtained from μ_{i} by applying the operator w_{i} at position P_{i}
of $w_{i}=I_{h} \circ r I_{v}$, then $\left(\mu_{i+1} p_{i+1}\right)=\left(\mu_{i}, p_{i}\right)$
h "histories" admissible sequence

2-colored vacillating tableaux
$(P, Q) \rightarrow(\alpha, \beta) \rightarrow$ sequence h
Young tableaux pair of
same shape λ maximal chains
$\phi \rightarrow \lambda$

$$
h=\left(\left(\mu_{1}, p_{1}\right), \cdots,\left(\mu_{2 n}, p_{2 n}\right), \mu_{2 n+1}\right)
$$

with

$$
\begin{aligned}
\mu_{1}=\mu_{2 n+1} & =\varnothing \text { and } \\
& w(h)=U^{n} D^{n}
\end{aligned}
$$

3	
2	5
1	4

$$
h=\left(\left(\mu_{1}, p_{1}\right), \cdots,\left(\mu_{2 n}, p_{2 n}\right), \mu_{2 n+1}\right)
$$

with

$$
\begin{aligned}
\mu_{1}=\mu_{2 n+1} & =\varnothing \text { and } \\
& w(h)=U^{n} D^{n}
\end{aligned}
$$

starting from $h_{0}(\alpha, \beta)=h_{0}(P, Q) \quad T=\varnothing$
we "propagate" the "commutation diogrami' through the lattice $[n] \times[n]$.

At any step, we have a pair

T tableau above the path associated $t_{0} w(h)$ with cells labeled by

$$
(h, T) \longleftrightarrow h_{0}=h(\alpha, \beta)
$$

are in bijection
By recurrence

Thus $h(\alpha, \beta)$ in bijection with

T tableau above the path associated to w(h) with cells labeled by

$$
(h, T) \longleftrightarrow h_{0}=h(\alpha, \beta)
$$

are in bijection

This "propagation" algorithm is exactly the reverse of Fomin's "growth diagrams"

rook placements

rook placement as a Q- tableau

$$
\begin{aligned}
& w=D U^{3} D^{2} U^{2} D U^{2} \\
& w \longrightarrow F=F(w) \quad F_{\substack{\text { Ferrers } \\
\text { diagram }}}
\end{aligned}
$$

Proposition

$$
w(U, D)=\sum_{T} D^{i(T)} U^{j(T)}
$$

D

$$
\left\{\begin{array}{l}
i(T)=\text { number of rows with no cell labeled } \\
j(T)=\text { number of columns } U D \rightarrow I_{v} I_{h}
\end{array} \quad q^{k(T)}\right.
$$

Lemma Every word w with letters U and D can be written in a unique way

$$
w=\sum_{i, j \geqslant 0} c_{i j}(w) D^{i} U^{j}
$$

Proposition
$c_{i j}(w)=$ number of placements of k rooks on the Ferrers "board" F
with

$$
\begin{aligned}
& i=|w|_{D}-k \\
& j=|w|_{U}-k
\end{aligned}
$$

$$
\begin{gathered}
U^{n} D^{n}=\sum_{0 \leqslant i \leqslant n} c_{n, i} D^{i} U^{i} \\
c_{n, 0}=n!
\end{gathered}
$$

permutations

$$
c_{n, i}=\binom{n}{i}^{2}(n-i)!
$$

choice of the underlying $\binom{n}{i}^{2}$
grid

binary tree T associated to a possible newnitung process

$$
U^{2} D^{2}=D^{2} U^{2}+4 D U+2 I
$$

this polynomial is independant of the order of the sulistitutions

binary tree T associated to a possible rewriting process

$$
U^{2} D^{2}=D^{2} U^{2}+4 D U+2 I
$$

this polynomial is independant of the order of the sulistitutions

binary tree T associated to a passible rewriting process

leafs of $T \xrightarrow{\text { bijection }}$
complete Q-tableaux shape λ

$$
\lambda=F(w)
$$

Another representation of the algebra

$$
U D=D U+1
$$

Polya urn

$$
A \bullet \bullet \bullet \bullet \bullet \bullet
$$

$$
\begin{array}{r}
A \odot \cdot x^{s} \cdot \bullet \\
\underbrace{\times s^{\bullet} \cdot \cdot}
\end{array}
$$

$A S-S A=I$

Priority queue

$$
A S-S A=I
$$

S
data structures
Computer Science

