Enumerative and algebraic combinatorics, a bijective approach:
commutations and heaps of pieces (with interactions in physics, mathematics and computer science)

Monday and Thursday 14h-15h30
www.xavierviennot.org/coursIMSc2017

IMSc
January-March 2017

Xavier Viennot
CNRS, LaBRI, Bordeaux www.xavierviennot.org

Epilogue Kepler Towers

IMSc, Chennai
16 March 2017

System of Kepler towers

- regular polygons $P_{2}, P_{4}, P_{8}, \ldots$.

$$
P_{i} \quad 2^{i} \quad \text { edges }\{0
$$

- heaps H_{1}, \ldots, H_{k} H_{i} heap of dimers above P_{i} ($=$ tower)
(*) at level 0 , H_{i} contains

Prop. The number of system of Kepler towers having n dimers is

$$
\begin{array}{ll}
\text { Catalan } \\
\text { number }
\end{array} \quad C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Why Kepler Towers ?

Donald Knuth

Mittag-Leffler Institute

Tabvia İI orbivmPlane tar vm dimensiones, et distantias per ginave REOVLARIA CORPORA GEOMETRICA EXHIBENS
ILLVSTRISS: PR INCIPI, AC D $\bar{N} O$, D $\bar{N} O$, FR IDER ICO, DVCI WIR. TENBERGICO, ET TECCIO, COMITI MONTIS BELGARVM, EIC.CONSECRATA.

Mysterium

Tabvia ilio orbivmplanetar vm dimensiones et ditantias per qinove

Prop. The number of system of Kepler towers having n dimers is

$$
\begin{aligned}
& \text { Catalan } \\
& \text { number }
\end{aligned} \quad C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

The distribution of system of Kepler towers according to the number of towers is the strabler distribution

$$
\max \left(k, k^{\prime}\right)
$$

Deck path w
Height $\quad h(w)$
logarithmic height lh (w)

$$
=\left\lfloor\log _{2}(1+h(w))\right\rfloor
$$

$$
\begin{aligned}
& l h(w)=k \\
\Leftrightarrow \quad & 2^{k}-1 \leqslant h(w)<2^{k+1}-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { (complete) } \\
& \text { binary trees } \\
& n \text { (internal) vertices (1984) } \\
& \begin{array}{l}
\text { Strahler } n b=k \\
\text { Knuth }
\end{array} \quad \begin{array}{l}
\text { (2005) }
\end{array} \quad \begin{array}{l}
\text { Deck paths } \\
\text { length } 2 n \\
l h(w)=k
\end{array}
\end{aligned}
$$

$$
S_{\leqslant k}(t)=\frac{F_{2^{t k+1}}(t)}{F_{2^{k+1}} 1}(t)
$$

Fibonacci polynomial

$$
\begin{aligned}
& S_{k}(t)=\frac{t^{2^{k-1}}}{F_{2^{k+1}-1}(t)} \\
& \quad \underline{e x:} \quad S_{3}(t)=\frac{t^{7}}{F_{15}(t)} \\
& S_{k}(t)=S_{k-1}(t) \times \frac{t^{\left(2^{2-1}\right)}}{L_{2}(t)} \quad=\underbrace{\frac{1}{F_{1}}}_{1} \times \frac{t}{L_{2}^{(t)}} \times \frac{t}{L_{4}^{(t)}} \times \frac{t}{L_{8}^{(t)}}
\end{aligned}
$$

$L_{n}(t) \quad$ Lucas polynomial
system of Kepler towers number of towers

Programs to Read
ZEILBERGER, FRANCTON, VIENNOT, an explanatory introduction, and a MetaPost source file for VIENNOT Three Catalan bijections related to Strahler numbers, pruning orders, and Kepler towers (February 2005)

Thank you very much!
for all of you, students, professors, friends,
video technicians, and matsciencechannel

special thanks to Amri Prasad

