Enumerative and algebraic combinatorics, a bijective approach:
commutations and heaps of pieces (with interactions in physics, mathematics and computer science)

Monday and Thursday 14h-15h30
www.xavierviennot.org/coursIMSc2017

IMSC
January-March 2017

Xavier Viennot
CNRS, LaBRI, Bordeaux www.xavierviennot.org

Chapter 7

Heaps in statistical mechanics
 (3)

q-Bessel functions in physics

IMSc, Chennaí
16 March 2017

Bessel functions

Bessel functions

$$
\begin{array}{r}
J_{\alpha}(x)=\sum_{m} \frac{(-1)^{m}}{m!\Gamma(m+\alpha+1)}\left(\frac{x}{2}\right)^{2 m+\alpha} \\
\Gamma(m)=(m-1)!
\end{array}
$$

canonical solutions

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-\alpha\right) y=0
$$

modified Bessel functions

$$
I_{\alpha}(x)=i^{-\alpha} J_{\alpha}(i x)
$$

9-analog

$$
\begin{aligned}
n!\rightarrow & 1(1+q) \cdots\left(1+q+\cdots+q^{n-1}\right) \\
& \frac{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}{(1-q)^{n}} \\
J_{0}= & \sum_{n \geqslant 0} \frac{(-1)^{n} x^{n} q^{(n+1)}}{(q)_{n}(y q)_{n}} \\
J_{1}= & \sum_{n \geqslant 1} \frac{(-1)^{n-1} x^{n} q^{(n+1)}}{(q)_{n-1}(y q)_{n}}
\end{aligned}
$$

notation
$(a)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)$
from the previous lecture

Lorentzian triangulations in 2D qantum gravity

Path integral amplitude for the propagation from geometry l_{1} to l_{2}
generating function
 for pyramids of dimers with 4° parameters
-t, v, y

- x number of dimers in the last column

Catalan number

$$
C_{n}=\frac{1}{(n+1)}\binom{2 n}{n}
$$

generating function
Proposition for pyramids of dimers with 4 parameter e
-t, v, y

- x number of dimers

$$
\frac{y t^{n} v^{n}}{\widetilde{F}_{n}(t, y, 1) \tilde{F}_{n+1}(t, y, x)}
$$

$$
C=\frac{Q}{1-Q}+C \sum_{k \geqslant 1} \frac{Q}{1-Q} \times Q^{k} \times \frac{1}{F_{k-1}}
$$

$$
\begin{aligned}
F_{n} & =\frac{\left(1-Q^{n+1}\right)}{(1-Q)(1+Q)^{n}} \\
\underbrace{(1+Q)^{n}}_{D^{n}} & =\frac{1}{F_{n}} \times\left(1+Q+\ldots+Q^{n}\right)
\end{aligned}
$$

curvature
of the space-time

flat

$$
\text { Total } \begin{gathered}
\text { curvature }
\end{gathered}=\prod_{\substack{\text { ae } \\
\text { points }}} a^{(\cdots)}
$$

continuum limit $I_{1} \bmod$ ied Bessel $_{\text {Function }}$ function

$$
G_{\Lambda}\left(L_{1}, L_{2} ; T\right)=\frac{e^{-\left(\operatorname{coth}^{n} \sqrt{\Lambda} T\right) \sqrt{\lambda\left(L_{1}+L_{2}\right)}}}{\operatorname{sh} \sqrt{\Lambda} T} \frac{\sqrt{\Lambda L_{1} L_{2}}}{L_{2}} I\left(\frac{2 \sqrt{\Lambda L_{1} L_{2}}}{\operatorname{sh} \sqrt{\lambda} T}\right)
$$

Parallelogram polyomínoes (staírcase polygons)

and q-Bessel functions

M.Bousquet-Mélou, X.V. (1992) ${ }^{\circ}$
staircase polygon

staircase

generating function

$$
\begin{aligned}
& f(x, y ; q)=\sum_{m, n, p} a_{m, n, p} x^{m} y^{n} q^{p} \\
& =\sum_{\substack{p \\
\text { staircase } \\
\text { poryons }}} x_{\substack{c(P)}}^{\substack{c(P) \\
\text { coumins }}} \underbrace{\alpha(P)}_{\substack{r(P) \\
\text { rous }}}
\end{aligned}
$$

parallelogram
polyominoes $\left\{\begin{array}{lll}x & \text { length } & \left(\begin{array}{c}\text { ne of } \\ \text { columns) }\end{array}\right. \\ y & \text { height } & \text { ("row"s) } \\ 9 & \text { area } \\ \text { Klarner, Rivest (1974) }\end{array}\right.$

$$
y=\frac{J_{1}(x, y, q)}{J_{0}(x, y, q)}
$$

Bender
Delest, Fedou (1989)
Brak, Gultmann (1990)
Bousquat-Mebu, X.V.
(1990)

$$
\begin{aligned}
& J_{0}=\sum_{n \geqslant 0} \frac{(-1)^{n} x^{n} q^{\binom{n+1}{2}}}{(q)_{n}(y q)_{n}} \\
& J_{1}=\sum_{n \geqslant 1} \frac{(-1)^{n-1} x^{n} q^{\binom{n+1}{2}}}{(q)_{n-1}(y-q)_{n}}
\end{aligned}
$$

notation $\quad(a)_{n}=(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right)$

bijetion parallelogram polyominoes

 semi-pyramids of segments
bijection

- pyramids of segments E on \mathbb{N}^{+}

$$
\pi(\underset{\substack{\text { unique } \\ \text { mivicual }}}{\text { and }}=[1, k], k \geqslant 0
$$

- parallelogram polyominces $\boldsymbol{\Lambda}$

23
22
34
13
2

23
22
34
13
2

generating function

$$
f(t, u ; q)=\frac{N}{D}
$$

extension of the inversion Coma $M \subseteq P$

$$
\sum_{E} v(E)=\frac{N}{D}
$$

π (maximal pieces) $\in M$

$$
\begin{aligned}
& D=\sum_{\substack{\text { trivial heaps } \\
t_{\text {h }}}}(-1)^{|F|} V(F) \\
& N=\sum_{\substack{\text { trivial heaps } \\
\text { pieces } \& M}}(-1)^{|F|} V(F)
\end{aligned}
$$

Segments $\quad v([x ; j])=q^{j} t u^{(j-i)}$

$$
D=\sum_{n \geqslant 0} \frac{(-1)^{n} 匕^{n} q^{n} q^{\binom{n}{2}}}{(1-q) \cdots\left(1-q^{n}\right)(1-u q) \cdots\left(1-u_{q}\right)}
$$

$D=\sum$
(q-Bessel) E_{8}
configenation
2 by of disjoint segments

$$
V(E)=\Pi \quad v\binom{\text { each }}{\text { segment }}
$$

from integers partitions

to q-Bessel functions

$$
D=\sum_{n \geqslant 0} \frac{(-1)^{n} \epsilon^{n} q^{n} q^{(n)}}{(1-q) \cdots\left(1-q^{n}\right)(1-u q) \cdots\left(1-u^{n}\right)}
$$

$D=\sum_{n \geq 0} \frac{(-1)^{n} \frac{q^{\binom{n}{2}}}{\left(1-u_{q}\right) \cdots\left(1-u_{q}\right)}}{(1)}$

$D=\sum_{n \geqslant 0} \frac{(-1)^{n}}{\left(1-u_{q}\right) \cdots\left(1-u_{q}\right)}$

$$
N=u \sum_{n \geqslant 1} \frac{(-1)^{n-1} t^{n} q^{n} q^{(n)}}{(1-q) \cdots\left(1-q^{n-1}(1-u q) \cdots(1-u q)^{n}\right)}
$$

Segments $v([i ; j])=q^{j} t u^{(j-i)}$

$$
D=\sum_{n \geqslant 0} \frac{(-1)^{n} \epsilon^{n} q^{n} q^{\binom{n}{2}}}{(1-q) \cdots\left(1-q^{n}\right)(1-u q) \cdots\left(1-u q^{n}\right)}
$$

random parallelogram polyomínoes

random directed animal
fixed number of points (=area)

The Catalan garden
the Catalan garden

the Catalan garden

A festival of bijections....

other description of the bijection:

1. with the stairs decomposition of a heap of dimers
bijection
staircase polygons
Duck paths

Ch Ra (IMSC 2016) $p^{110-116}$

The Catalan garden

bijections

staircase polygons
Dyck paths

$$
\operatorname{Path}_{\text {onh }} x^{x} \xrightarrow{x}(\eta, E)
$$

semi-pyramids of dimers

violin:
G. Duchamp

bijection
staircase polygons
Duck paths
semi-pyramids of dimers
stair decomposition
Ch Ga, p^{50}

bjections
staircase polygons
Dyck paths
semi-pyramids of dimers
stair decomposition
Ch6a, p^{50}
semi-pyramids of segments
Ch6a, p55

parallelogram polyominoes
(staircase polygons)
semi- pyramids of dimers
stairs decomposition
semi-pyramids of segments
Duck paths

other description of the bijection:

2. with Lukasiewicz paths

Lukasiewicz path

$$
\begin{gathered}
\omega=\left(s_{0}, \ldots, s_{n}\right) \\
s_{0}=(0,0), \quad s_{n}=(n, 0)
\end{gathered}
$$

elementary step $s_{i}=\left(x_{i}, y_{i}\right) \quad s_{i+1}=\left(x_{i+1}, y_{i+1}\right)$

$$
x_{i+1}=1+x_{i} \quad \text { with } \quad y_{i+1} \geqslant y_{i}-1
$$

Ch2a (IMSc 2016) p 60

Ch2a, course 2016, p60-63
bijection

Dyck paths
Lukasiewicz paths

$$
\underset{p 60}{C h 2 a}(\text { IMSc 2016) }
$$

The Catalan garden

(reverse) Lukasiewicz paths

(reverse) Lukasiewicz paths

bijections

staircase polygons
Dyck paths
(reverse) Lukasiewicz paths

bijections
staircase polygons
Dyck paths
Lukasiewicz paths

$$
\operatorname{pooth~}_{\text {on }} x \longleftrightarrow x \longrightarrow(\eta, E)
$$

semi-pyramids of segments

poth $_{\text {on }} x^{\omega} \xrightarrow{\chi}(\eta, E)$

other description of the bijection:

3. with the bijection (paths - heaps of oriented loops)

$$
\omega_{u \sim v} \xrightarrow{\psi}(\eta, F)
$$

bijection

staircase polygons
Duck paths
$\underset{\alpha \sim v}{\omega} \xrightarrow{\psi}(\eta, F) \quad \operatorname{ch} 5 b, p^{21-2 q}$
heaps of oriented loops

$$
\omega_{u \sim v} \xrightarrow{\psi}(\eta, F)
$$

$$
\omega_{u \sim v} \xrightarrow{\psi}(\eta, F)
$$

$\operatorname{cu}_{u \sim v} \xrightarrow{\psi}(\eta, F)$

$$
\omega_{u \sim v}^{\omega} \xrightarrow{\psi}(\eta, F)
$$

$$
\omega_{u \sim v} \xrightarrow{\Psi}(\eta, F)
$$

$\omega_{u \sim v}^{\sim} \xrightarrow{\psi}(\eta, F)$

$\underset{a \sim v}{\omega} \xrightarrow{\psi}(\eta, F)$

complements

q-Bessel functions and SOS models (Solid on solid)

discrete $(1+1)$ - dimensional
SOS model with

- magnetic field
- boundary potentiel
- surface interactions
exact solution
A. Owczarek, T. Prellbery (1993)

Partially directed self-avoiding walks (paths)

$$
G(x, y, q, r)=\sum_{\substack{\omega \\ \text { sos path }}} v(\omega)
$$

weight iN is y

$$
\frac{\text { level }}{j} \rightarrow E \quad \begin{cases}x q^{j} & \text { if } j>0 \\ x k & \text { if } j=0\end{cases}
$$

A. Owczarek, T. Prelleerg (1993)

ou encore:

$$
\begin{aligned}
& \sum_{\omega}^{\text {encone: }} v(\omega)=\frac{H\left(q y^{2}, q, x\left(1-y^{2}\right) q\right)}{H\left(y^{2}, 9, x\left(1-y^{2}\right)\right)} \\
& \text { chemins sos } \\
& \text { arnant au neau or }
\end{aligned}
$$

notations:

$$
H(u, q, t)=\sum_{n \geqslant 0} \frac{(-t)^{n} q^{\binom{n}{2}}}{(u, q)_{n}(q, q)_{n}}
$$

avec $(u, q)_{n}=(1-u)(1-u q) \ldots\left(1-u q^{n-1}\right)$
(u)

$$
\begin{aligned}
& J_{0}=H(4 q, q, x q) \\
& J_{1}=H(4 q, q \times q)-H\left(4 q, q, x_{q}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{J_{1}}{J_{0}} \text { or } \frac{H\left(u q, q, x_{q}\right)}{H(4 q, q, x q)} \\
& =\sum_{\substack{p \\
\text { maximal pramice }}} V(P)
\end{aligned}
$$

$$
\underset{0}{v_{g}}(\boldsymbol{(i , j \leqslant j}]=t \mu^{(j-i)} q^{i}
$$

Paths with no peaks

$$
t \leftarrow x\left(1-y^{2}\right)
$$

9-Bessel
cheimins partiellement dirigé avec interaction "effondrement" des polymères

Brak, Guttmann, Whittington 1992 Owczavek, Prelllerg, Brak 1993 Zwanzig, Laurctzen 1968, 1970
autres familles de polyominos

chemin partiellement dirigé avec interactions

particular case: heaps of dimers and

Ramanujan contined fraction

$$
v([k-1, k])=q^{k} t
$$

$$
\text { area }=13
$$

$$
\text { area }=13
$$

$$
\begin{aligned}
& V([k-1, k])=q^{k} t \\
& \begin{array}{l}
\text { Deck } \rightarrow P \text { semi-pyramid } \\
\text { path dimers } \\
\text { on } \mathbb{N}
\end{array} \\
& \begin{array}{r}
V(P)=q^{|\omega| / 2+\operatorname{area}(\omega)} t^{|\omega| / 2} \\
V([k-1, k])=q^{k-1} t \\
V(P)=q^{\text {area }(\omega)} t^{|\omega| / 2}
\end{array}
\end{aligned}
$$

weighted heap $V(E)$

Rogers-Ramanujan identities

Rogers - Ramanujan identities

$$
R_{I} \sum_{n \geqslant 0} \frac{q^{n^{2}}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\prod_{i \equiv 1,4} \frac{1}{\left(1-q^{i}\right)}
$$

$$
R_{\text {II }} \sum_{n \geqslant 0} \frac{q^{n^{2}+n}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\prod_{i \equiv 2,3} \frac{1}{\left(1-q^{i}\right)}
$$

$\bmod 5$

D- partition

$$
\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)
$$

$$
\lambda_{i}-\lambda_{i+1} \geqslant 2
$$

$$
(1 \leqslant i<k)
$$

generating
for
D function partitions
$\sum$$\sum_{m \geqslant 0} \frac{q^{\left(m^{2}\right)}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{m}\right)}$

$$
\begin{array}{lc}
\begin{array}{c}
\text { Partition } \\
\text { ayant } \\
\text { au plus } \\
n
\end{array} & \begin{array}{c}
\text { parts partition } \\
\text { ayant }
\end{array} \\
0 \leqslant\left(\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{n}\right) & \left(1+\lambda_{1}, 3+\lambda_{2}, \cdots,\left(2 n-1 \lambda_{n}\right)\right.
\end{array}
$$

$$
n^{2}=1+3+\ldots+(2 n-1)
$$

Rogers-Ramanujan it identity
$D=\sum_{n \geqslant 0} \frac{q^{n^{2}}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}$

Rogers-Ramanujan $i^{\text {tr identity }}$
$D=\sum_{n \geqslant 0} \frac{q^{n^{2}}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}$
Poical

D-partition $\lambda=(10,6,4,1)$

$$
21=10+6+4+1
$$

$$
\lambda=(8,6,3)
$$

$17-8+6+3$

$$
=\sum_{n \geqslant 0} \frac{q^{n^{2}+n}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\delta D
$$

Rogers - Ramanujan identities

$$
R_{I} \quad \sum_{n \geqslant 0} \frac{q^{n^{2}}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\prod_{i \equiv 1,4} \frac{1}{\left(1-q^{i}\right)}
$$

partitions

$$
\begin{aligned}
& \text { parts } \equiv 1,4 \\
& \left\{\begin{array}{l}
9 \\
4+4+1 \\
6+1+1+1 \\
4+1+1+1+1+1
\end{array}\right. \\
& \bmod 5
\end{aligned}\{1+\ldots+1
$$

Rogers - Ramanujan identities

$$
R_{I} \quad \sum_{n \geqslant 0} \frac{q^{n^{2}}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\prod_{i \equiv 1,4} \frac{1}{\left(1-q^{i}\right)}
$$

$$
\left\{\begin{array}{l}
\text { D-partitions } \\
\begin{array}{l}
9+1 \\
8+1 \\
7+2 \\
6+3 \\
5+3+1
\end{array}
\end{array}\left\{\begin{array}{l}
\text { parts } \equiv 1,4 \\
9+4+1 \\
6+1+1+1 \\
4+1+1+1+1+1
\end{array} \quad\{1+\ldots+1) ~ m o d 5\right\}\right.
$$

$$
\begin{aligned}
& R_{\text {II }} \sum_{n \geqslant 0} \frac{q^{n^{2}+n}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\prod_{i \equiv 2,3} \frac{1}{\left(1-q^{2}\right)} \\
& \bmod \rightarrow \\
& \text { D-partitions Partitions } \\
& \text { parts } \neq 1 \\
& \text { parts } \equiv 2,3 \\
& \bmod 5 \\
& \left\{\begin{array}{c}
7+2 \\
6+3 \\
9
\end{array}\right. \\
& 2+2+2+3 \\
& 3 \div 3 \div 3 \\
& 7+2
\end{aligned}
$$

Ramanujan contined fraction

$$
\sum_{\text {semi-pyramis }} V(E)=\frac{1}{1+\frac{q}{1+\frac{q^{2}}{\cdots \cdots \cdot}}}
$$

Semi-pyramid
= sequence of "primitive" semi-pyramids

Semi-pyramid = sequence of "primitive" semi-pyramids

$$
\begin{aligned}
\sum_{E}^{E} V(E) & =\frac{1}{1-(-q) \sum_{E}^{E} \delta v(E)} \\
& =\frac{1}{1+\frac{q}{\text { semi-pyramis pyramis }}}
\end{aligned}
$$

$$
\sum_{\text {semi-pyramis }} V(E)=\frac{1}{1+\frac{q}{1+\frac{q^{2}}{\cdots \cdots \cdot}}}
$$

$$
\sum_{\text {semingramis }} V(E)=\frac{N}{D}
$$

$$
\frac{1}{1+\frac{q}{1+\frac{q^{2}}{1+\frac{q^{3}}{\frac{a-c}{k}}} 1+\frac{q^{k}}{\cdots \cdots}}}=\frac{\sum_{n \geqslant 0} \frac{q^{n^{2}+n}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}}{\sum_{n \geqslant 0} \frac{q^{n^{2}}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}}
$$

Hard Hexagons gas model

Baxter (1980)
$Z(t)$
partition function

$$
\begin{gathered}
R(q)=\prod_{n \geqslant 0} \frac{\left(1-q^{5 n+1}\right)\left(1-q^{5 n+4}\right)}{\left(1-q^{5 n+3}\right)\left(1-q^{5 n+2}\right)}=\frac{R_{I I}}{R_{I}} \\
t=-q[R(q)]^{5}
\end{gathered}
$$

$$
Y(q)=\prod_{n \geqslant 0} \frac{\left(1-q^{6+2}\right)\left(1-q^{6 n+3}\right)^{2}\left(1-q^{6 n+4}\right)\left(1-q^{5 n+1}\right)^{2}\left(1-q^{5 n+7}\right)^{2}\left(1-q^{-5 n+8}\right)\left(1-q^{6 n}\right)^{2}}{\left(1-q^{n+2}\right)^{3}\left(1-q^{5 n+3}\right)^{3}}
$$

$$
Z(t)=y(q(t))
$$

Andrews interpretation of the «reciprocal» of
Ramanujan continued fraction
quasi- partitions
of n
G. Andrews (1981) reciprocal of Rogers- Ramanujan identities

$$
\begin{array}{r}
n=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k} \\
1+\lambda_{i} \geqslant \lambda_{i+1} \\
i=1, \ldots, k-1
\end{array}
$$

$$
\lambda=(4,4,3,1,2,3,2,1)
$$

exercise Ch lb, p 71 weight-preserving bijection quasi-partitions heaps of dimers
on DV
 bijection
I heaps of dimers

$$
H \longrightarrow \lambda=(4,4,3,1,2,3,2,1)
$$

quas i- partition

$$
\frac{1}{D}=\sum_{\substack{k=k_{n} p s \\ \text { sin } \\ \text { dimers }}} v(E)
$$

$$
\frac{1}{R_{I}}=\sum_{\substack{\lambda \\ q_{\text {pera }}\\}}(-1)^{e(\lambda)} q^{|\lambda|}
$$

G. Andrews (1981) reciprocal of

other future chapters

Complementary Topics

- minuscule representations of lie algebra (R. Green and students) book
- basis of free partially commutative Lie algebra (Lalonde, Duchamp-Krob, .~)
199
COMBINATORICS OF MINUSCULE REPRESENTATIONS
r. m. green

Lyndon words Lyndon heaps
R. Green (2013)

- statristical phypies:

Ising model revisited

- string theory and heaps (Ramgoolam) gauge theory, quivers

Q-syptems, heaps, peths and clusters positwity

- computer science:
the SAT problem revisited with heaps (D. Knuth, vol 4, Fascicle 6)
- computer silence:

Petrie nets, asynchronous automat, Ziebinka theorem

