Course IMSc Chennaí, Indía January-March 2017

Enumerative and algebraic combinatorics, a bijective approach: **commutations and heaps of pieces** (with interactions in physics, mathematics and computer science)

Monday and Thursday 14h-15h30

www.xavierviennot.org/coursIMSc2017

IMSc January-March 2017 Xavier Viennot CNRS, LaBRI, Bordeaux

www.xavierviennot.org

Chapter 6

Heaps and Coxeter groups (1)

fully commutative elements and Temperley-Lieb algebra

IMSc, Chennaí 23 February 2017

The heap monoid of a Coxeter group

finite set S

M square symmetric matrix
indexed by S
$$\begin{cases} m_{ss} = 1 \\ m_{st} = m_{ts} \in \{2, 3, ..., \} \cup \{\infty\} \end{cases}$$

•
$$s^2 = 1$$
 for all $s \in S$
• $sts \dots = tst \dots$ if $m_{st} < \infty$
 m_{st} m_{st}

braid relations

· s2=1 for all sES

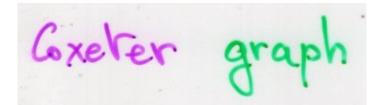
• sts... = tst.... if mst <00

(st)"st = 1

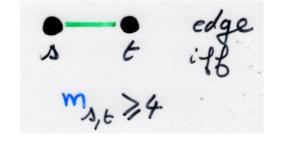
$$\begin{cases} m_{ss} = 1 \\ m_{st} = m_{ts} \in \{2, 3, ..., 3, ..., 3, 0\} \end{cases}$$

Coxeter matrix Coxeter system M (W,S)





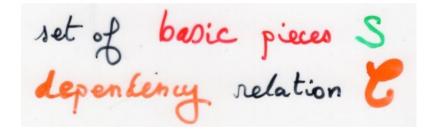
verkex set S



Coxeter-Dynkin diagram

labeled I graph

associated to the Coxeter group W (in fact Exeter system) (W,S)



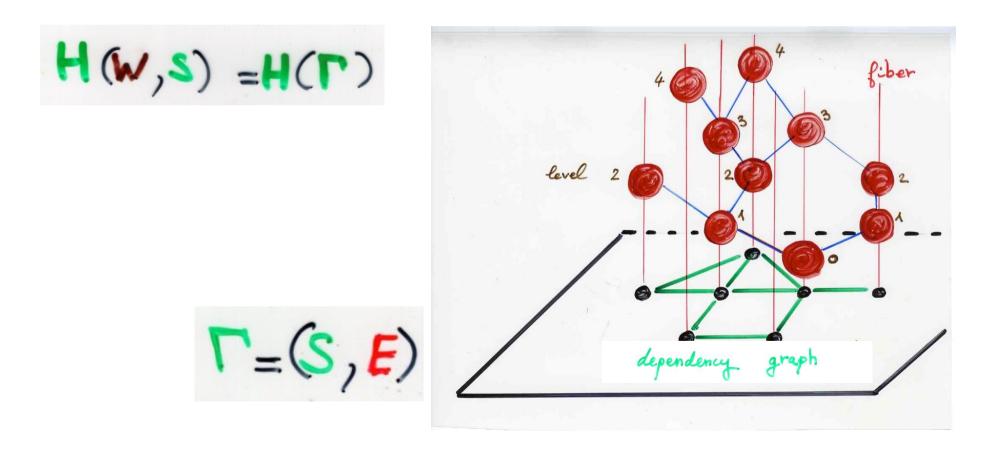
ACT iff $m_{s,t} \neq 2$

in other words

S-263 1-26t, (2+t) ill 5-6

H(W,S) is the heap monoid associated to the graph r as in Ch5

I is the dependency graph



finite poset (H, ⊰)

labeling map TT H = T

(denoted E) in the original paper "étiquette"

second definition of heaps, Chilc, p29,31 (i) $\alpha, \beta \in E$, $\pi(\alpha) \subset \pi(\beta) \Rightarrow \{or \beta \neq \alpha\}$ (ii') ≼ is the transitive closure of the relation in (i)

can be rewritten can be rewritten as:

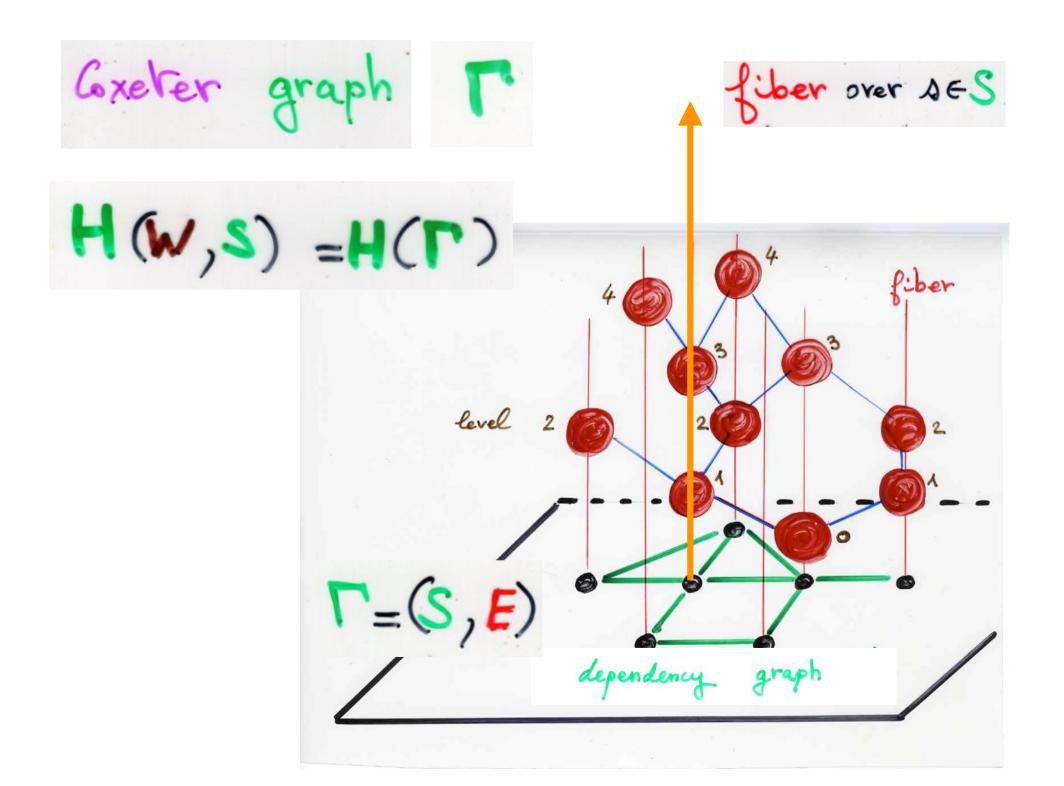
for every vertex $S \in S$ $H_s = T = 1 (7s_i^2)$ is a chain (1)'

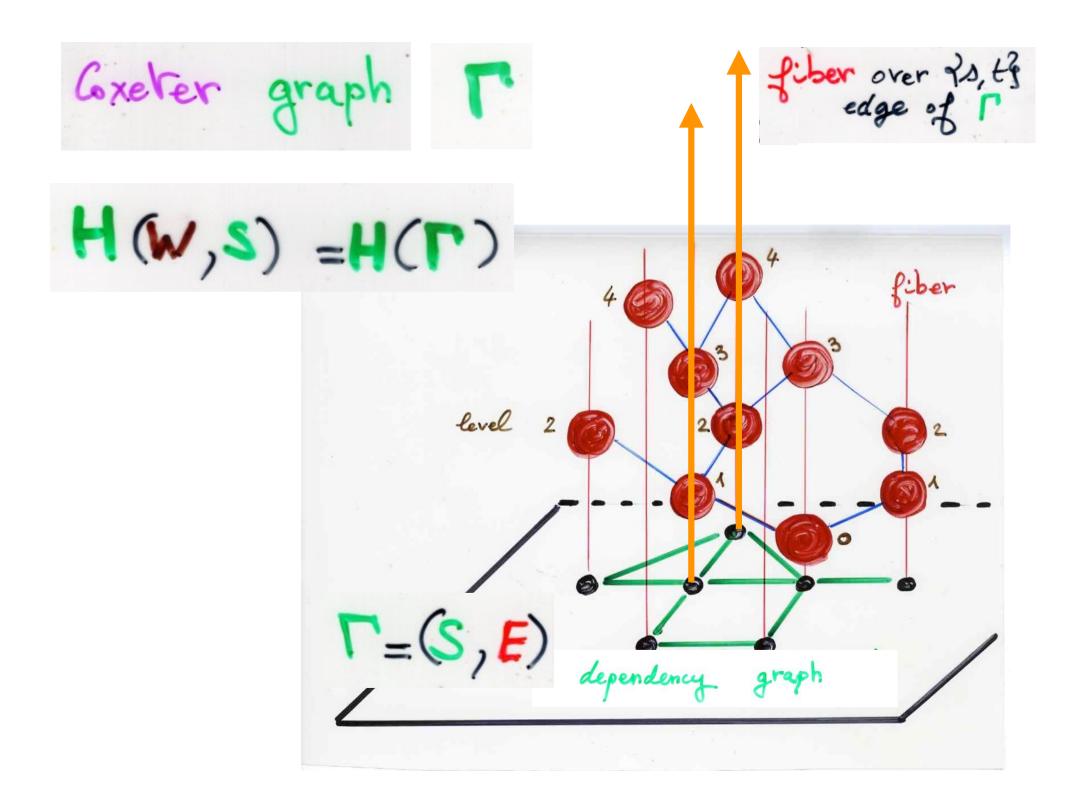
for any edges $f, t_{f} \neq \Gamma$ $H_{s,t} = \Pi^{-1}(f, s, t_{f})$ is a chain fiber over 75, tg edge of r

chain = totally ordered subset of H

The order relation of is the transitive closure of the relations given by all chains of (i)! H, Hot

(i.e. the smallest partial ordering containing these chains)



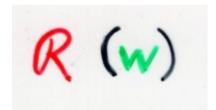


reduced decomposition

W= J. ... Jn Si ES

n = l(w)length

reduced decomposition: factorization w=sz.sn minimal length



set of reduced decomposition of w

(Matsumoto property)

Given two reduced decompositions of w, there is a sequence of braid relations which can be applied to transform one into the other

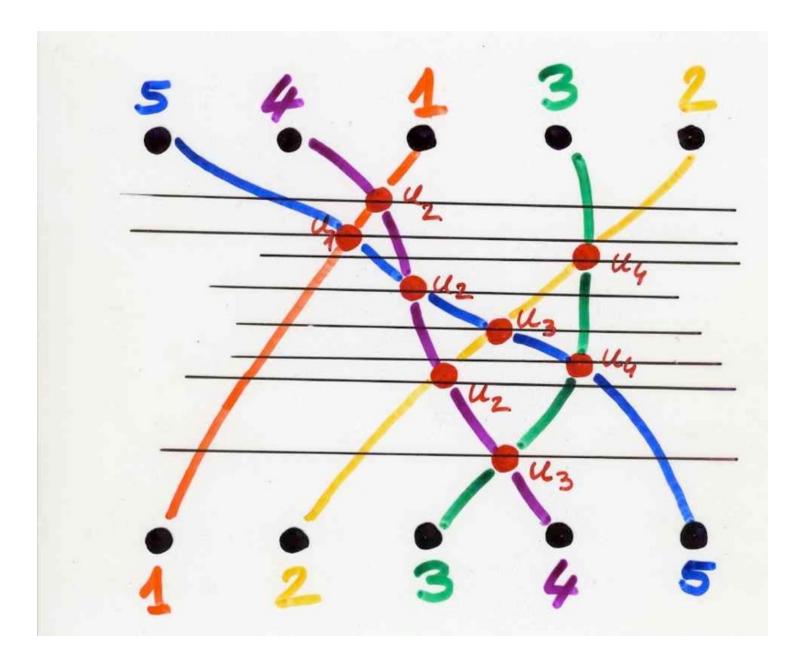
[w] commutation class C = set of reduced decompositions obtained by using only the commutation relations st=to for s,tES and m_{s,t}=2

Lemma. The set R(w) of reduced decompositions is a disjoint union of commutation classes. For each of them, there exist a heap H(C) of H(W,S) such that C is exactly the set of linear extensions of the poset H(C)

Heaps of dímers

and the symmetric group

Symmetric group n! permutations $\overline{t}_{i} = (i', i+1) \quad i=1,2,...,n-1$ transposition of two consecutive elements $(i) \ \sigma_i \sigma_j = \sigma_j \sigma_i, \quad |i-j| \ge 2$ $(ii) \quad \nabla_i^2 = \mathbf{1},$ $(iii) \ \overline{U_i U_{i+1} U_i} = \overline{U_{i+1} U_i} \ \overline{U_i} = \overline{U_{i+1} U_i} \ \overline{U_{i+1}} \ .$ Moore - Gxeler Coxeter graph Yang - Baxter



$$u_{i}(a_{1} - a_{i} a_{i+1} - a_{n})$$

$$= (a_{1} - a_{i+1} a_{i} - a_{n})$$

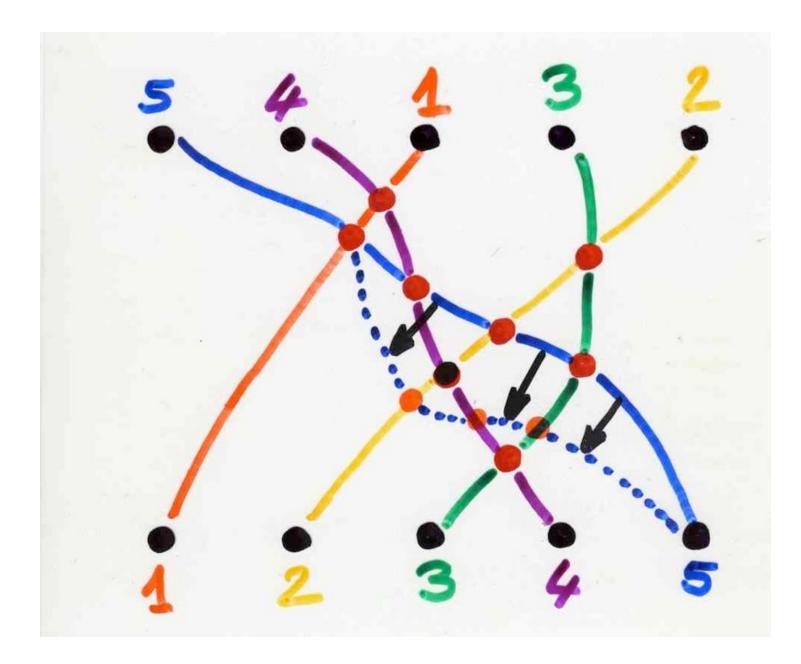
$$equivalently:$$

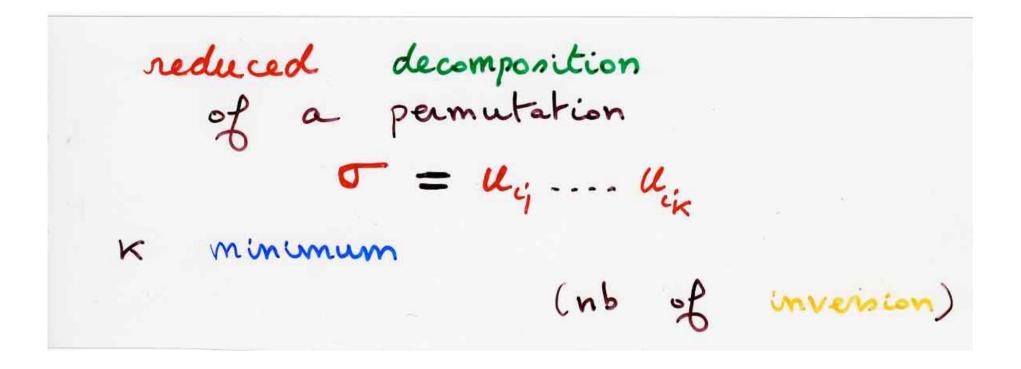
$$if \quad \nabla = u_{i_{1}} - u_{i_{k}}(12 - n)$$

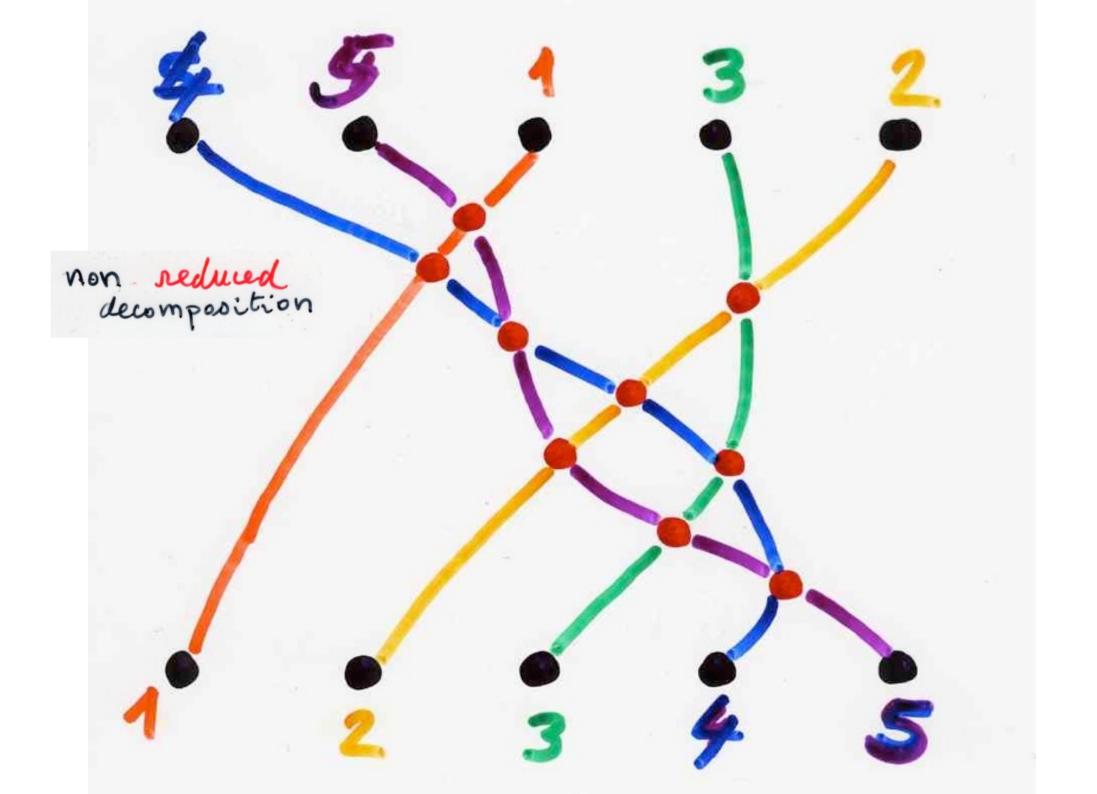
$$\sigma^{-1} = S_{i_{1}} - S_{i_{k}}$$

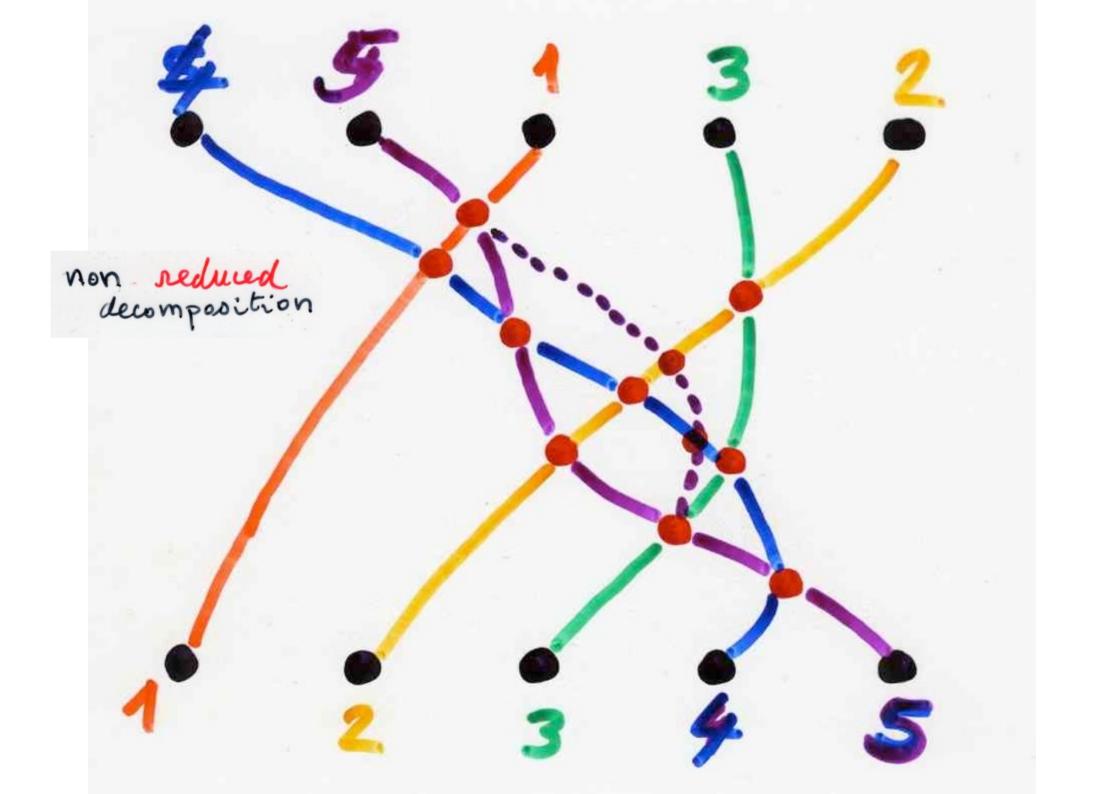
$$S_{i} = (i_{1} i_{1})$$

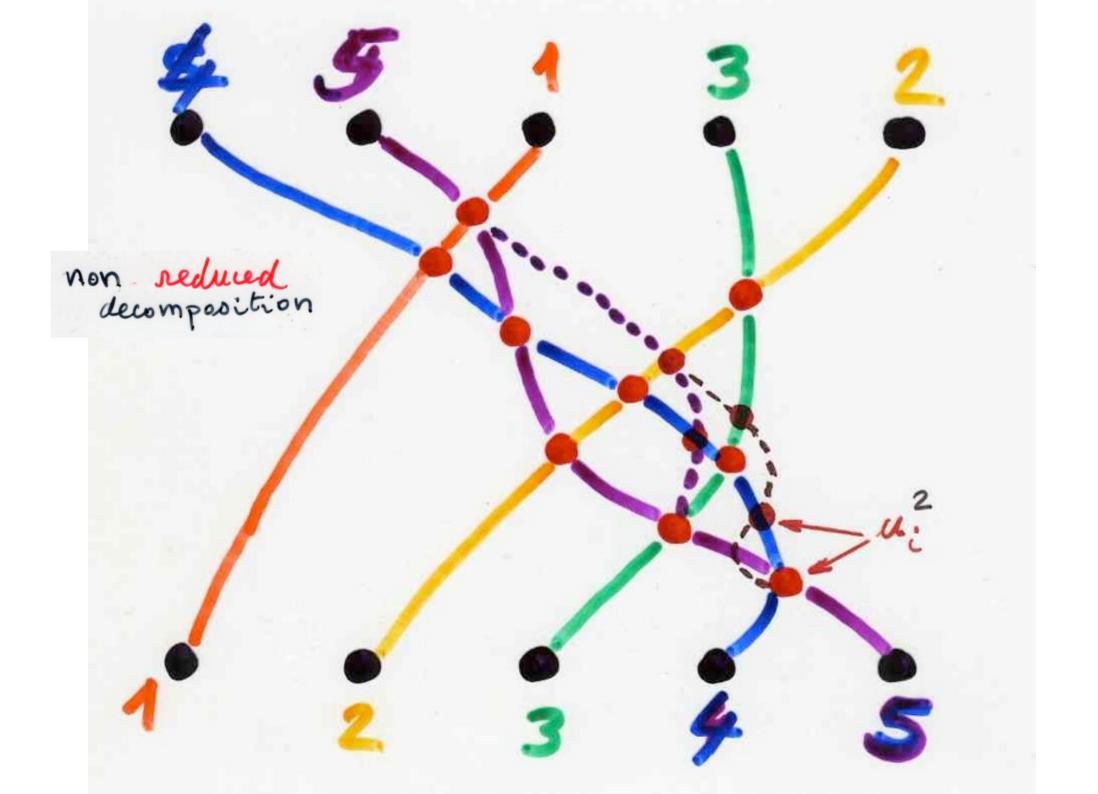
$$transposition$$





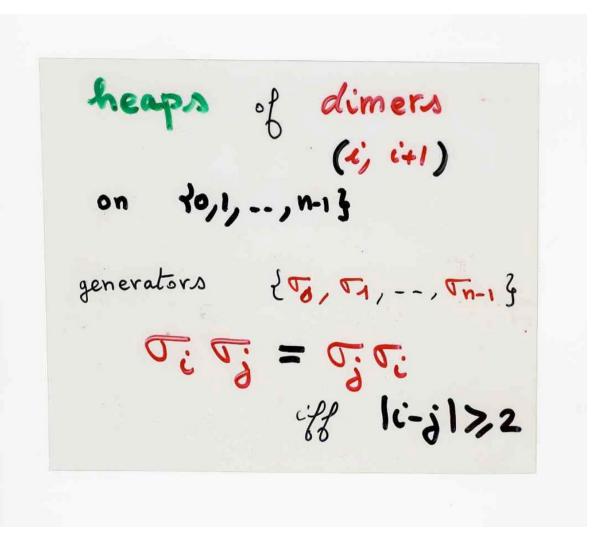


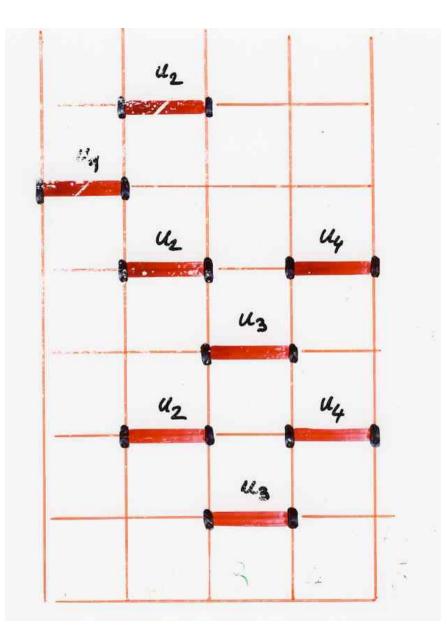


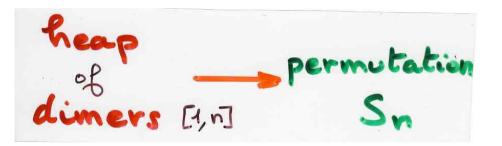


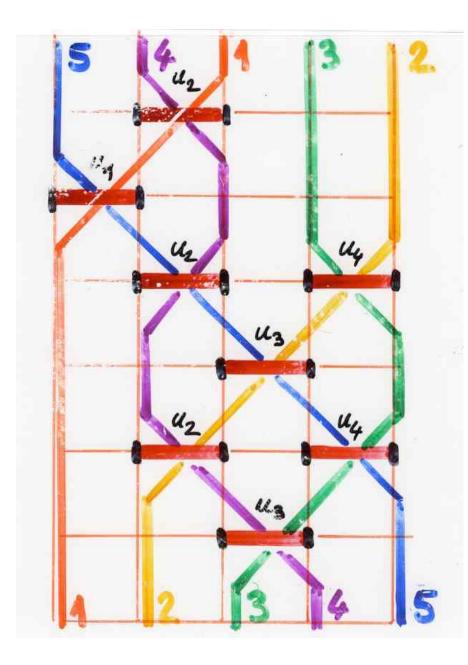
number of reduced (linear extensions) = > decomposition commutation of resn class of Elnitsky J

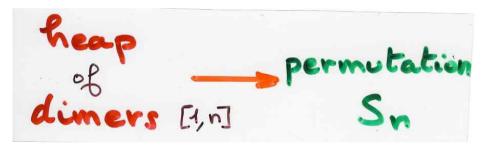
Lemma. The set R(w) of reduced decompositions is a disjoint union of commutation classes. For each of them, there exist a heap H(C) of H(W,S) such that C is exactly the set of linear extensions of the poset H(C)

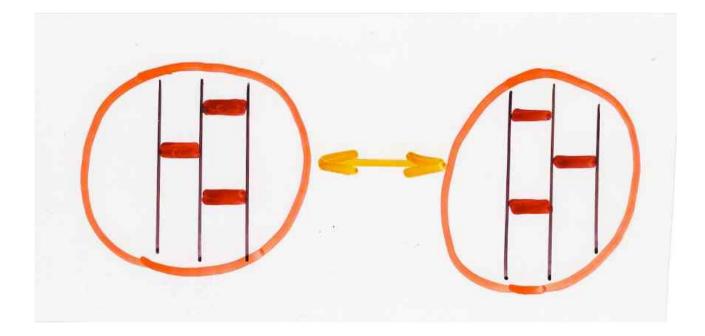












fully commutative elements in Coxeter groups

<u>Pefinition</u> An element w of the Coxeter group W is fully commutative iff $\mathcal{R}(w)$ is reduced to one commutation class.

The corresponding heap H(w) will also be called fully commutative (FC)

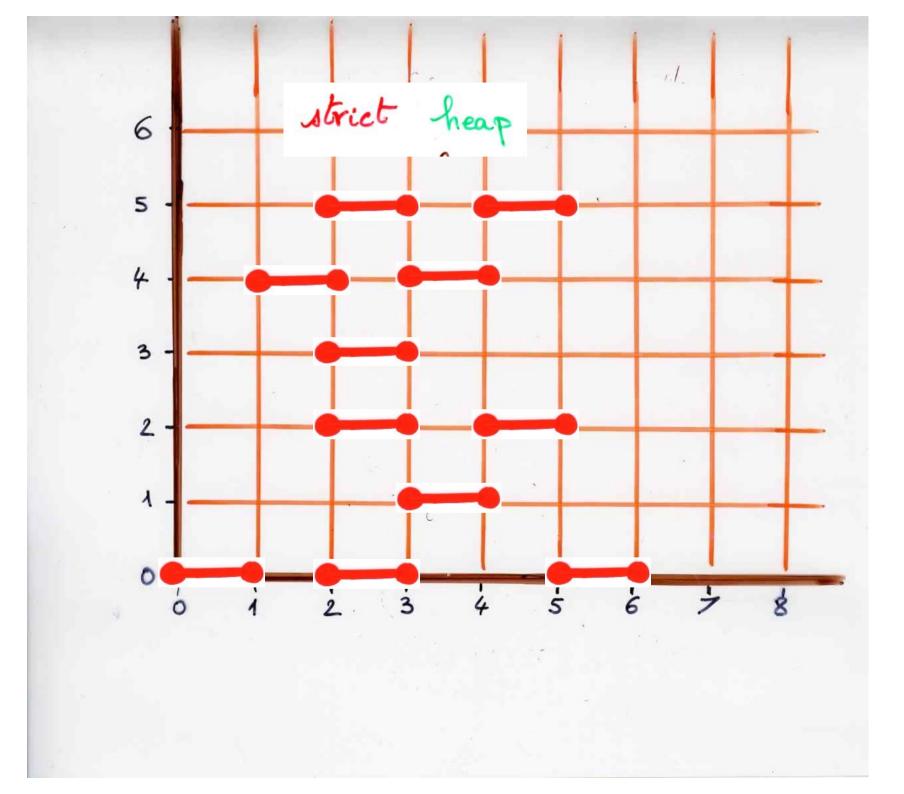
Lemma (Stembridge)(1995) A reduced word w represents a FC element iff no elements of its commutation class [w] outains a factor sts... for a $m_{j,t} \ge 3$

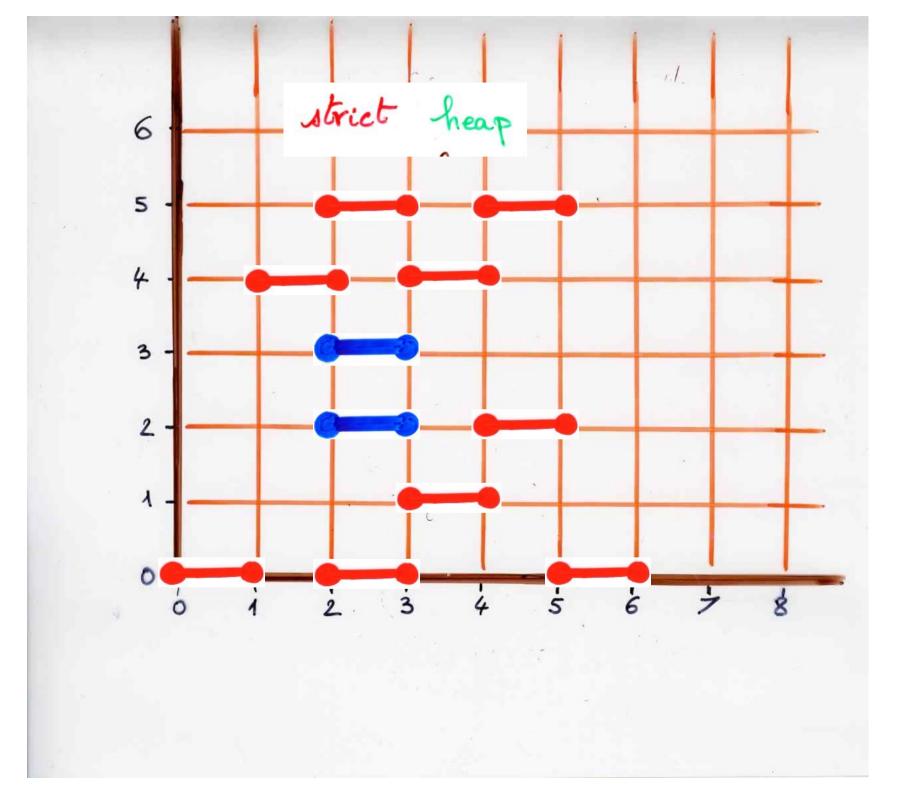
Proposition (Stembridge, 1995) A heap $H \in H(W,S)$ is FC iff and⁽ⁱ⁾ (ii) strict heap convex chain

strict heap

 $\frac{\text{Definition}}{\text{iff}} \quad \text{no covering relation} \quad \textbf{Z} \prec \textbf{y} \text{ in } \textbf{H}$ $\text{such that} \quad T(\textbf{z}) = T(\textbf{y})$

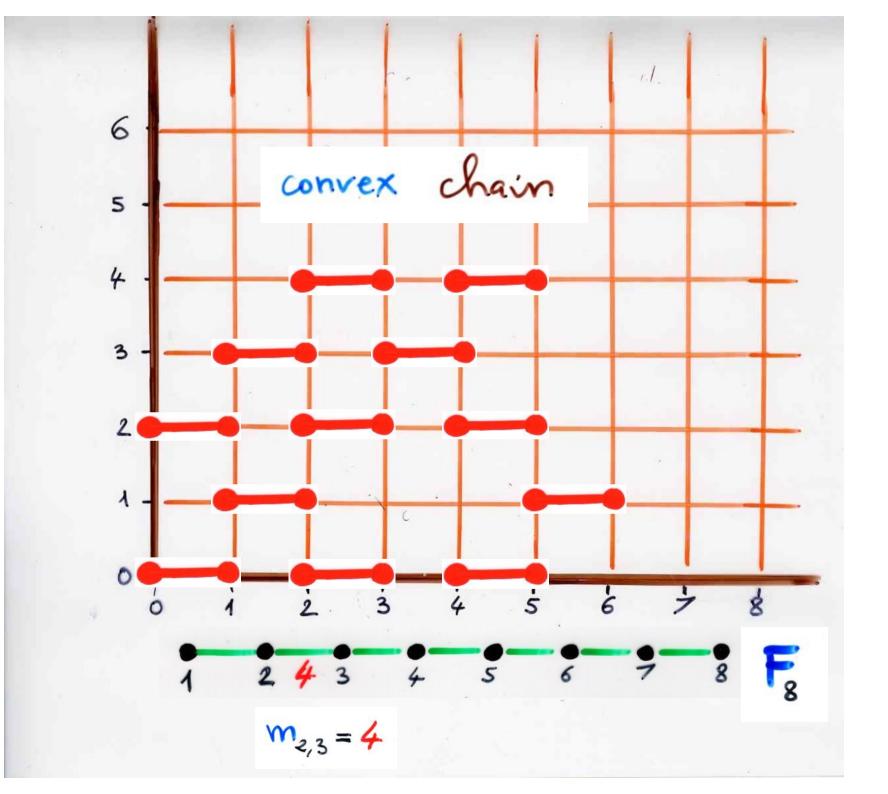
example heaps of dimers on IN

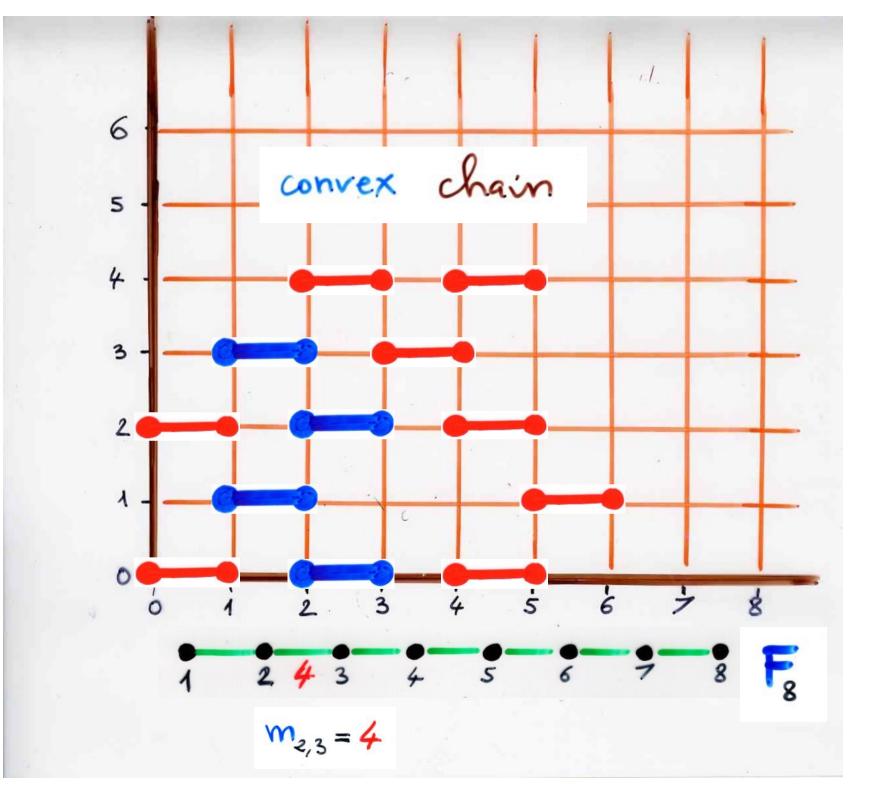


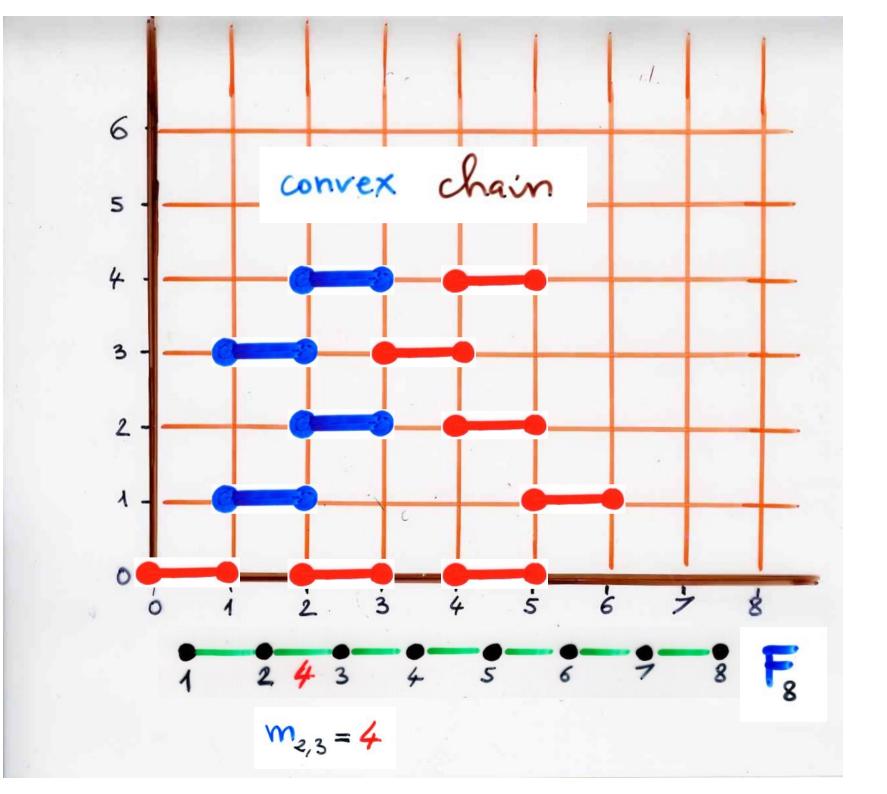


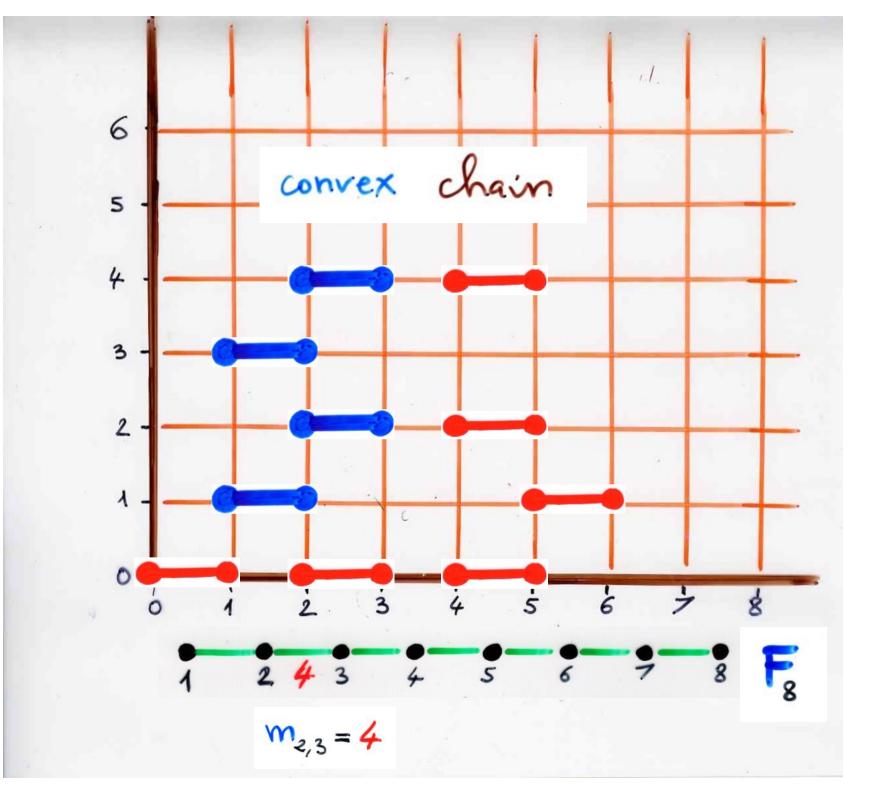
convex chain

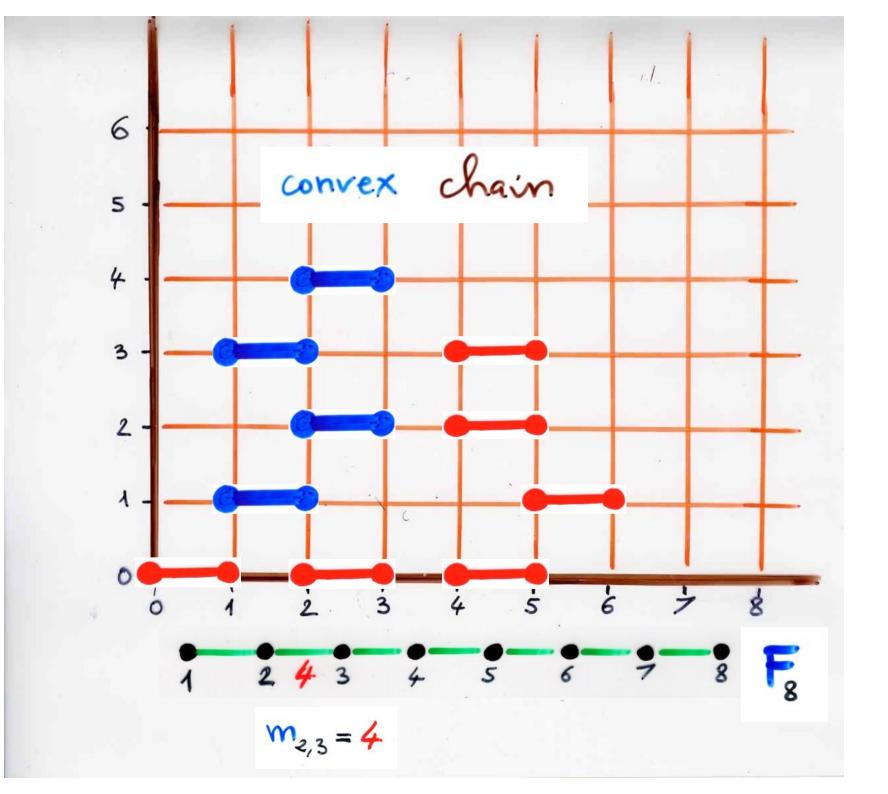
Definition convex chain in a poset x1 × x2 × ··· < xk iff the only elements Z with X1<Z<Xk we the elements of the chain





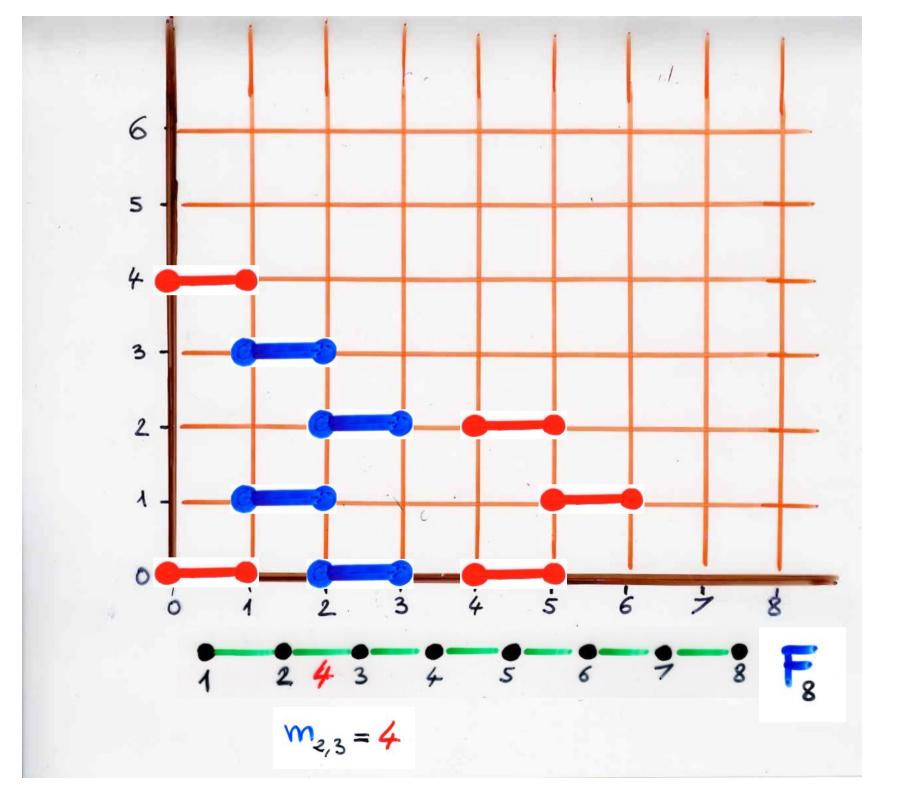


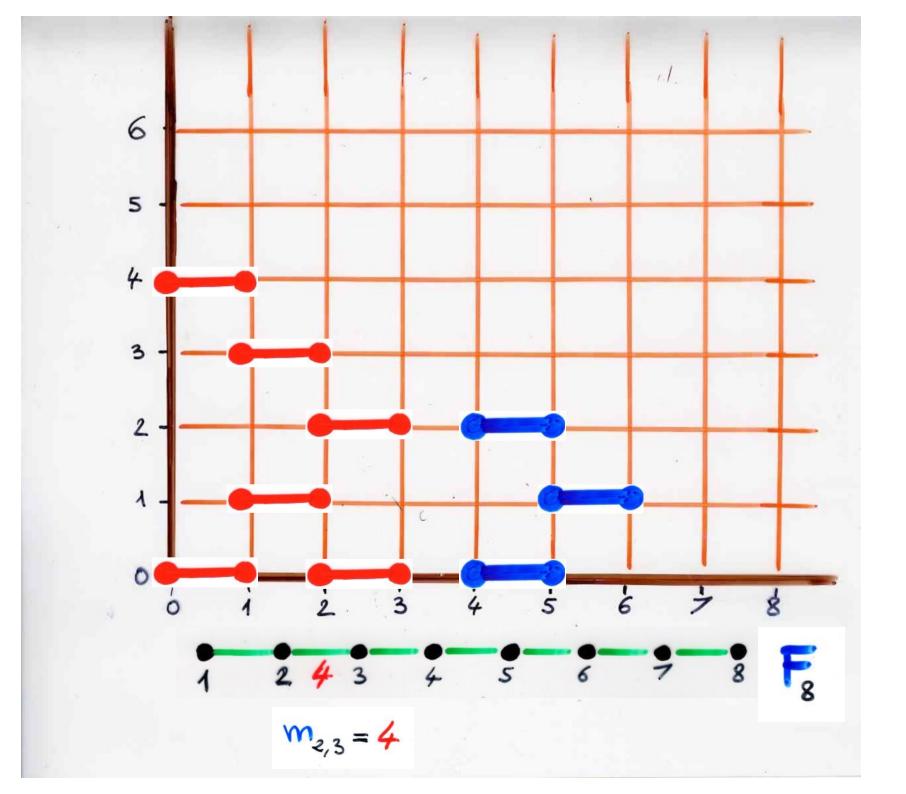




Proposition (Stembridge, 1995) A heap $H \in H(W,S)$ is FC iff and (i) & H is strict (ii) & H does not contain a convex chain such that

where x1 X x2 X ···· X mat $3 \leq m_{s,t} < \infty$ xy x3, x5, --- E TT-1(20?) 12, 14, - - ETT-1 (74?)





seminal papers -> Stembridge (1996, 98) · classification of Exeter groups with a finite number of FC elements • enumeration in each of these cases -> always algebraic generating functions

-> Fan (1995) for monthe 3 (simply laced

-> Graham (1995) FC clements in any loxeter group W naturally index Sa basis of the generalized Temperley-Lieb algebra

finite loxeler groups An A. Br 4 Bn Dn Dn . E E E En Fn . . . 4 F H. 5 H2 H4 I_2(m) . m. $I_{(m)}$ The list of FC-finite Exeter groups $T_{2}(5) = H_{2}$ $I_2(6) = G_0$

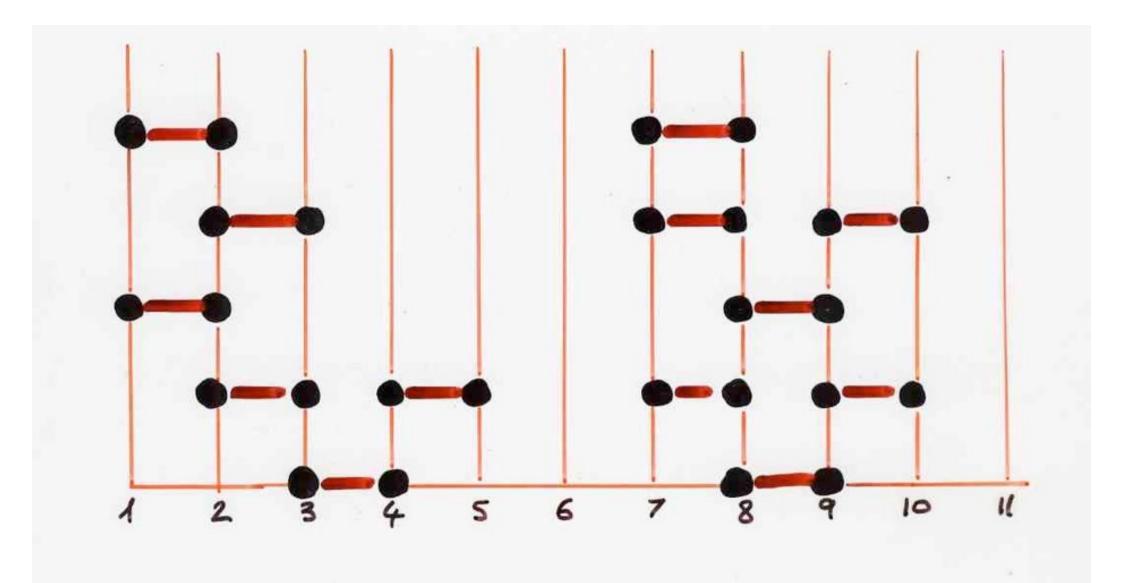
FC elements in relation with Karhdan- Lusitig polynomials Greene, Shi, Cellini, Papi, ...

affine Coxeter groups Biagioli, Jouhet, Na dean (2014, 2015) ", Bousquet-Merlon (2016) Hanusa, Jones (2010)

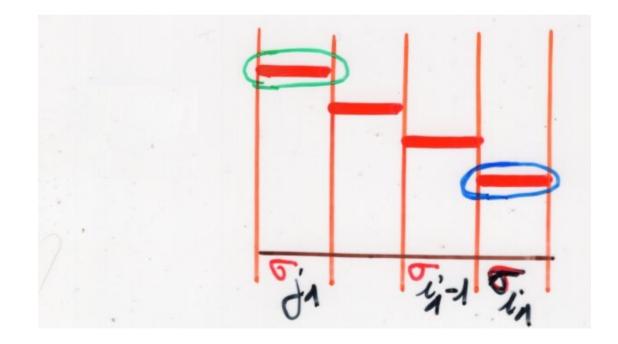
fully commutative elements

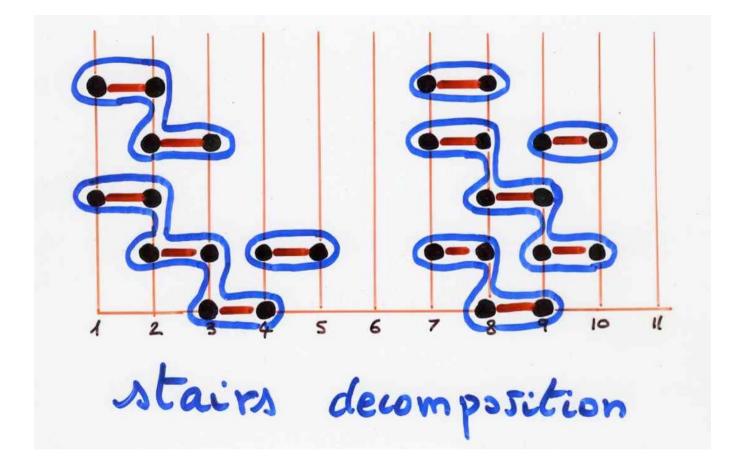
(for the symmetric group)

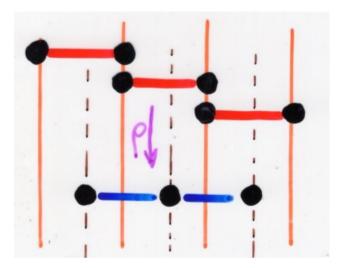
the stairs decomposition of a heap of dimers



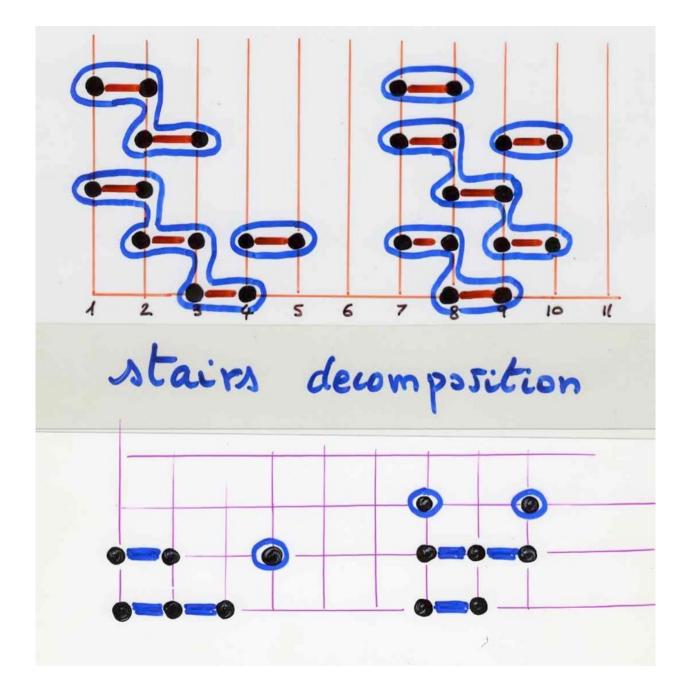
a stair is a convex chain of dimens





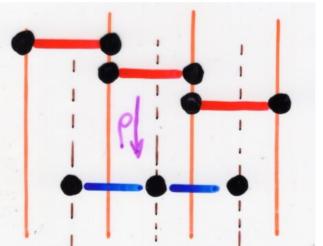


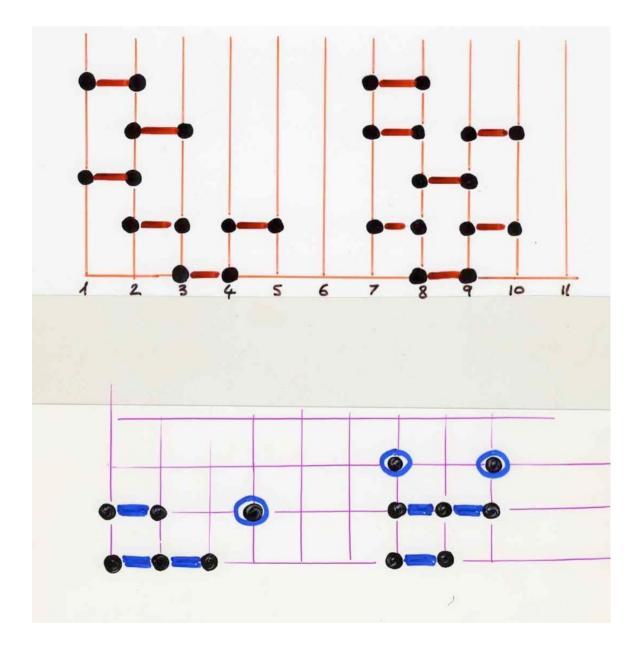
substitution

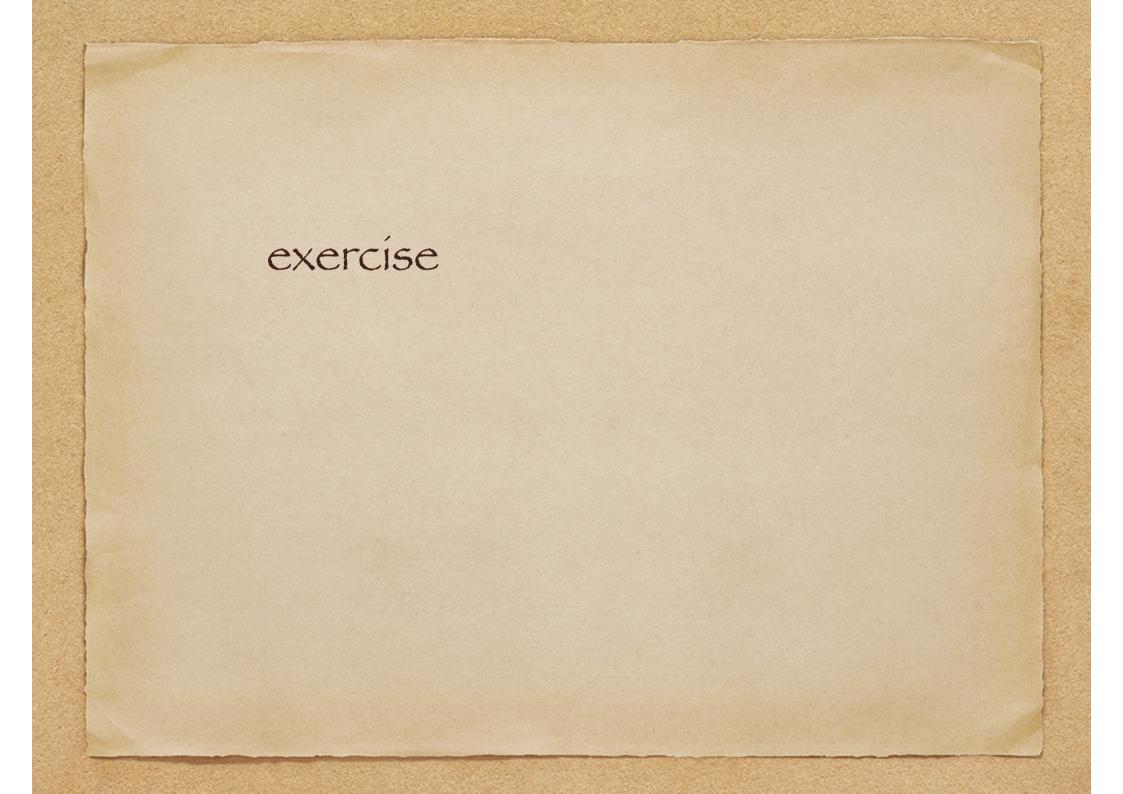


Proposition The stairs decomposition of a heap of dimens on IN gives a highertion p heap of P heap of on N dimens on N segments on N

substitution



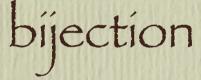




exercise

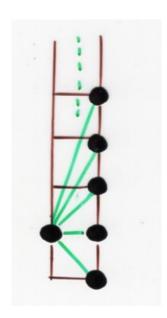
Dyck paths X gyramids 1 dimers Lukasiewiz paths X pyramids Lukasiewiz paths X pyramids

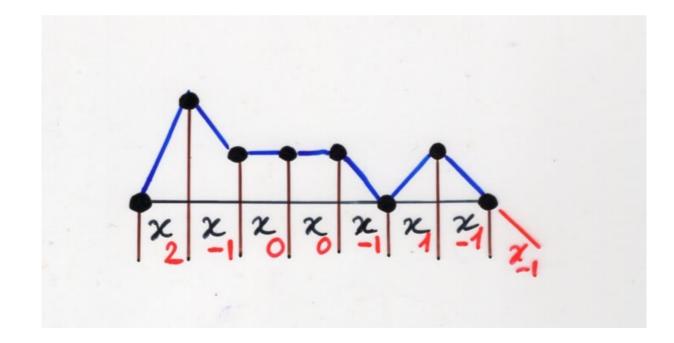
from course IMSc 2016 p51 and p60-63

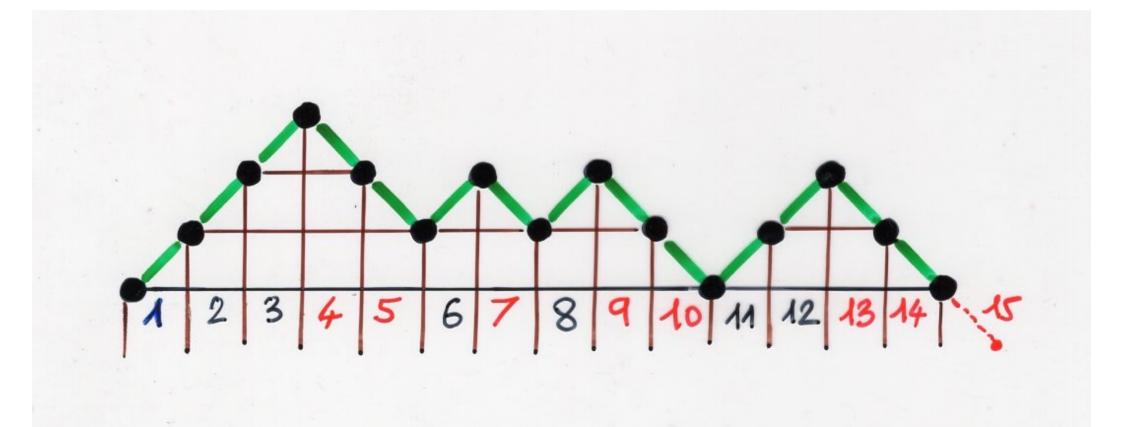


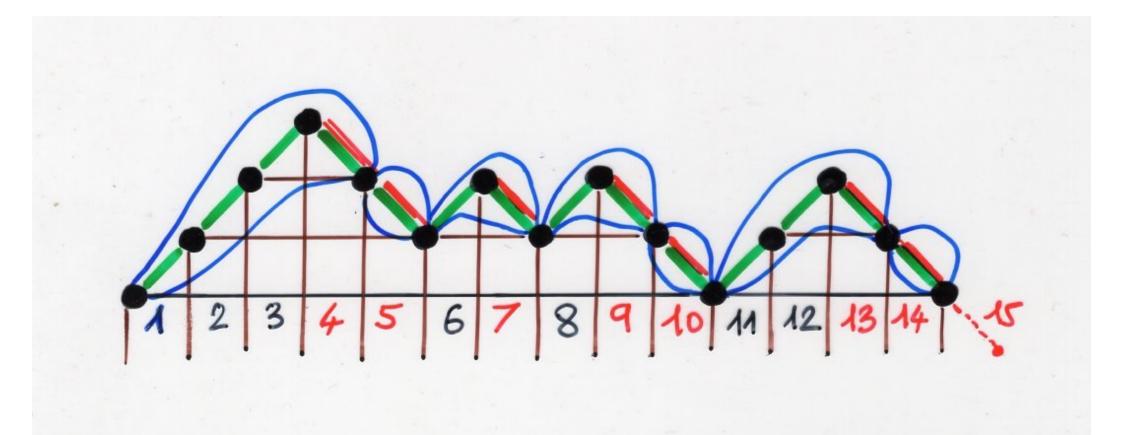
Dyck paths Lukasiewicz paths

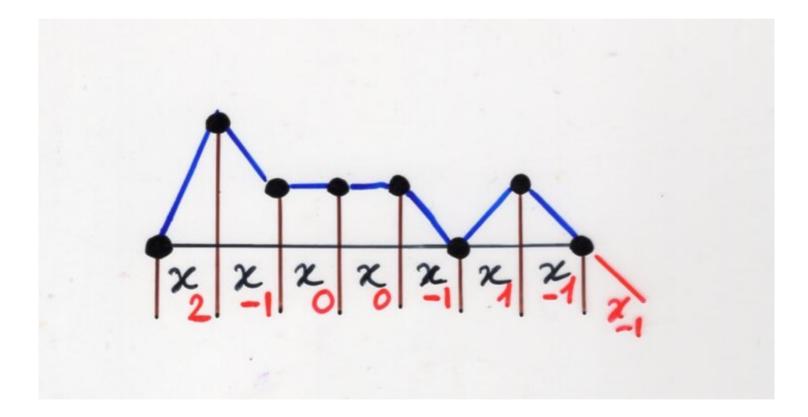
Lukasiewicz path w = (so, ..., sn) so=(0,0), sn=(n,0) elementary step $S_i=(x_i, y_i)$ $S_{i+1}=(x_{i+1}, y_{i+1})$ $x_{i+1}=1+x_i$ with $y_{i+1} \ge y_i-1$









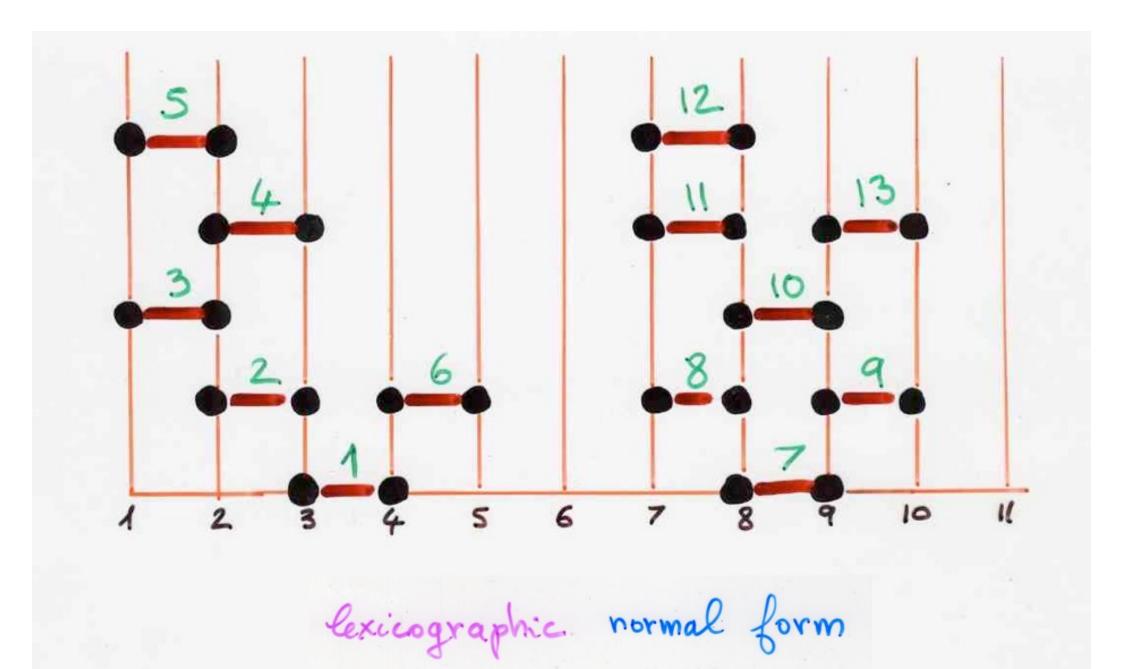


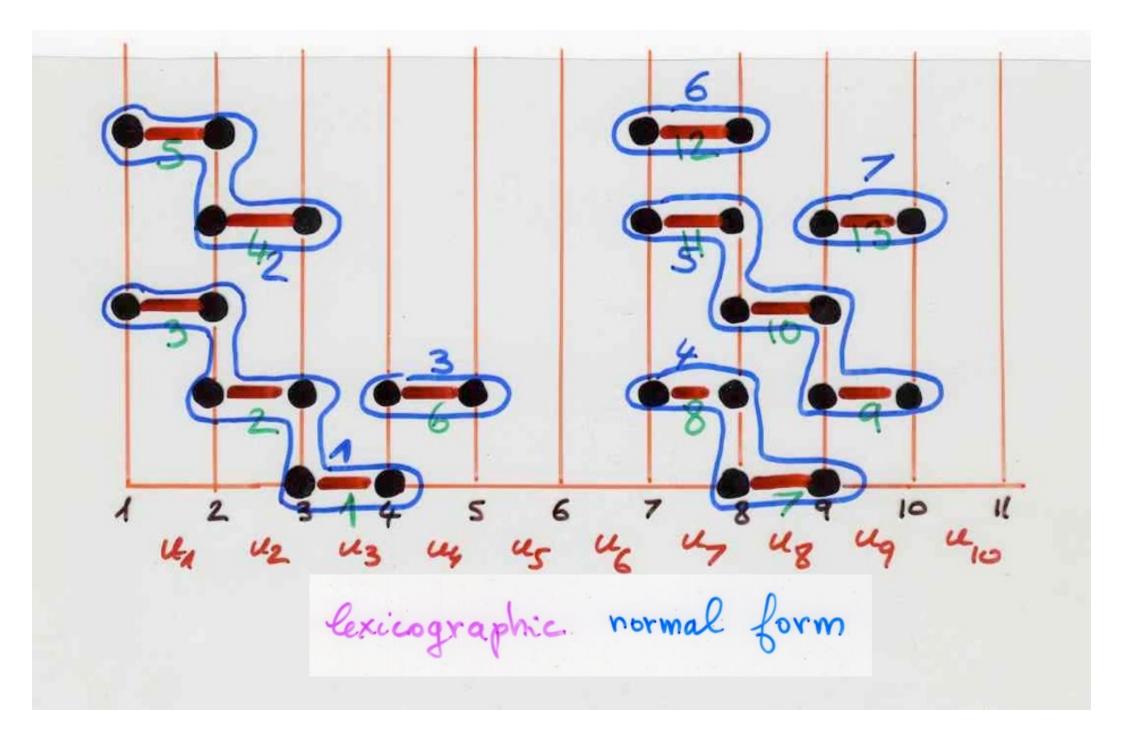
exercise

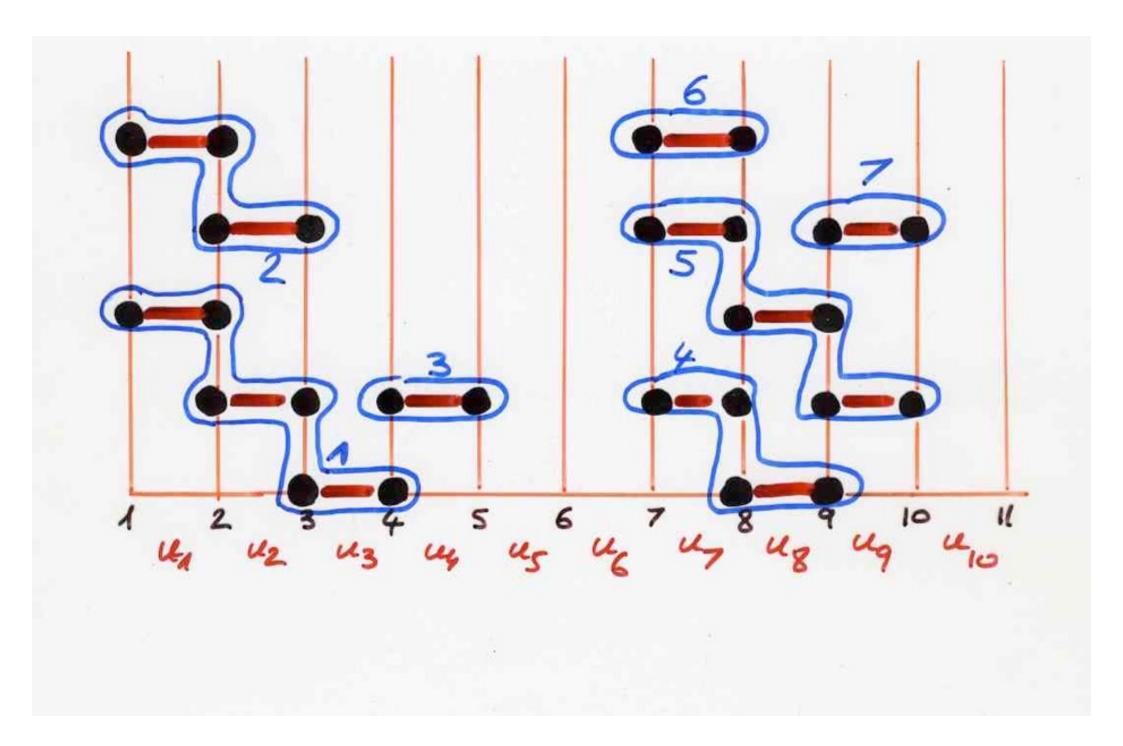
Dyck paths ~ gyramids compare 1 d'imers ?)P Lukasiewiz paths X pyramids 1 segments

Dyck paths I pyramide of ??

total order of the stairs in a heap of dimers



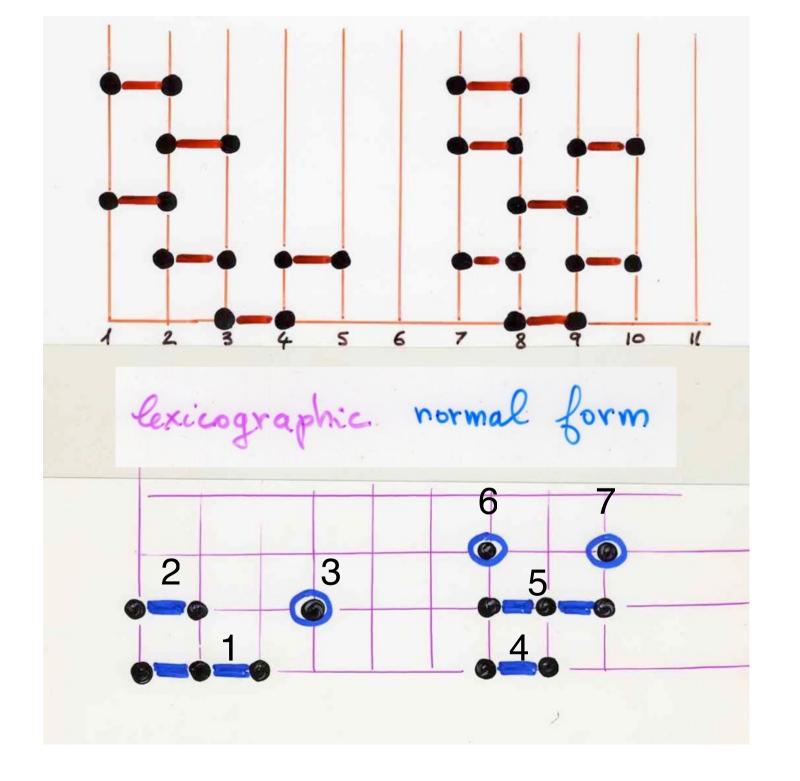


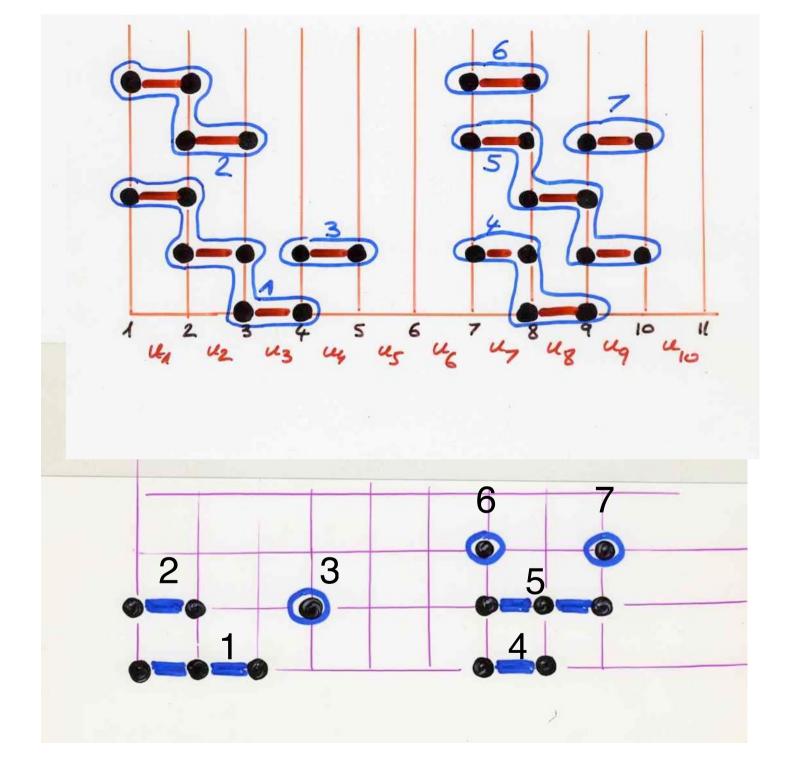


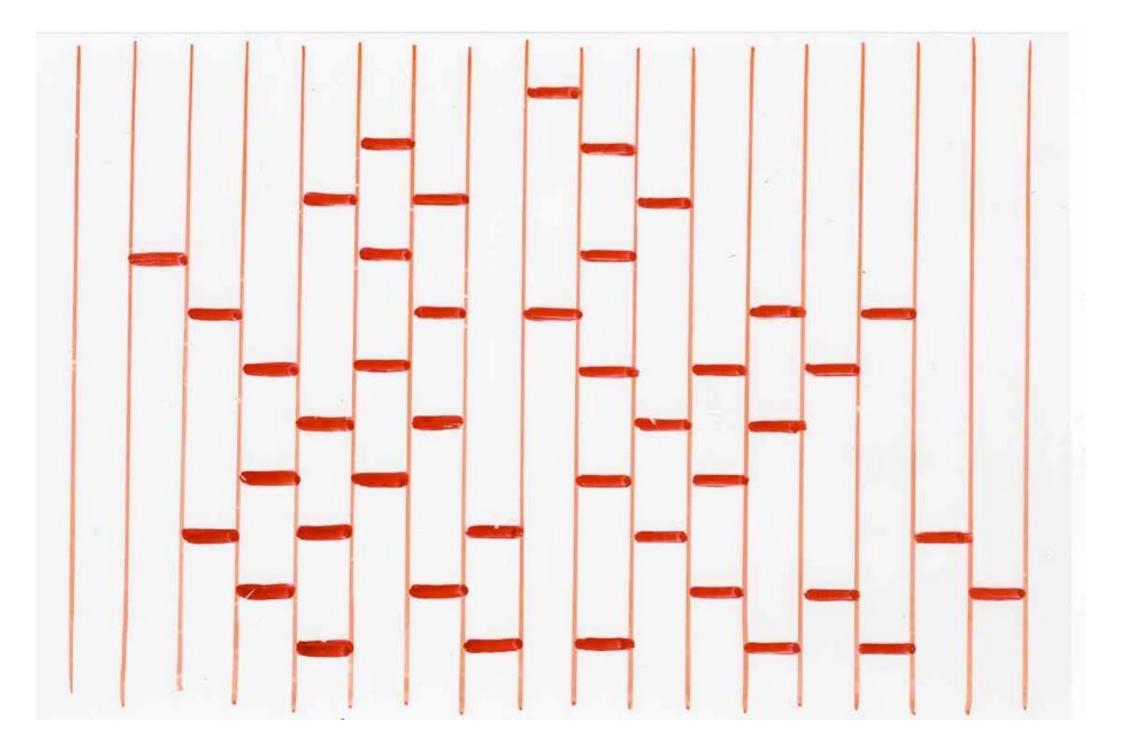
ordering the segments ---- × ---

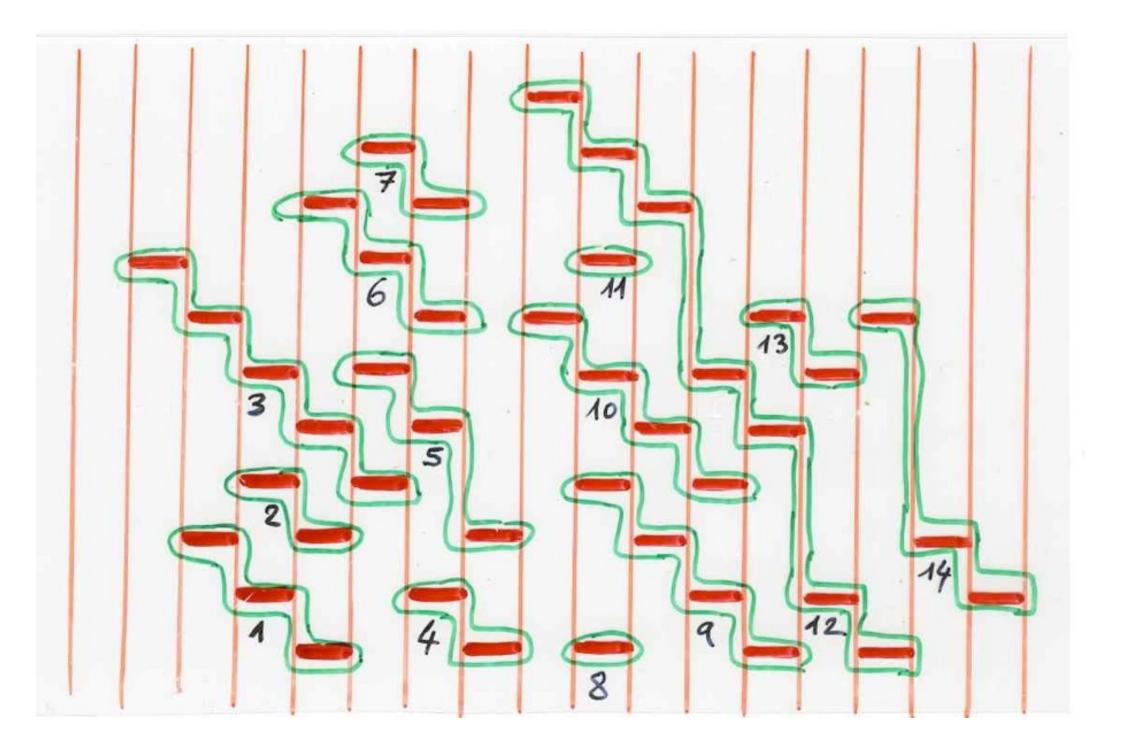
total order of the segments in a heap of segments

total order of the stairs in a heap of dimers









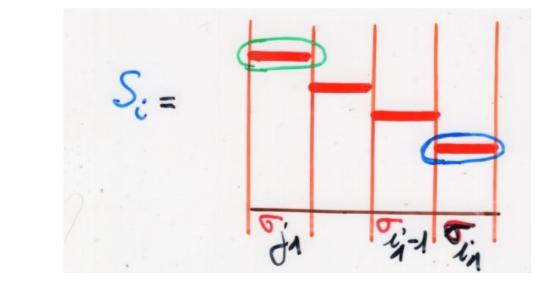
the stair lemma

The stair lemma

Let H be a strict heap of dimers on IN
and
$$H = S_1 \odot S_2 \odot \cdots \odot S_R$$

its stair decomposition with
 $S_1 \prec S_2 \checkmark \cdots \checkmark S_R$

Si = To o Ti 0 --- 0 Ti (product f dimers)

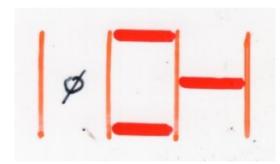


notation $\overline{v_{ii}} = \min(S_c)$ $\overline{v_{ji}} = \max(S_c)$

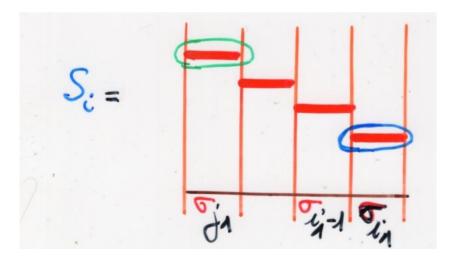
The stair lemma no occurrences of

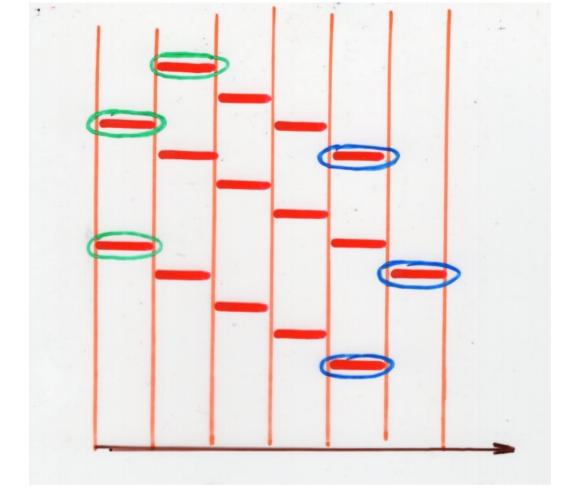
ø

 $\iff \min(S_{1}) \prec \cdots \prec \min(S_{p})$



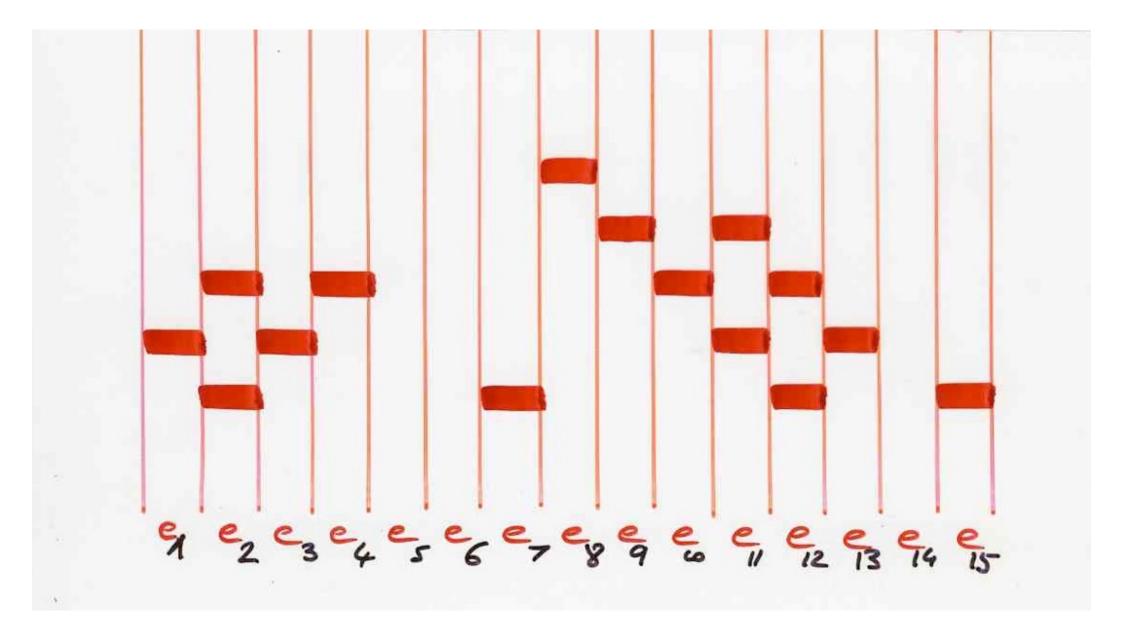
max(S) < ··· < max(S)

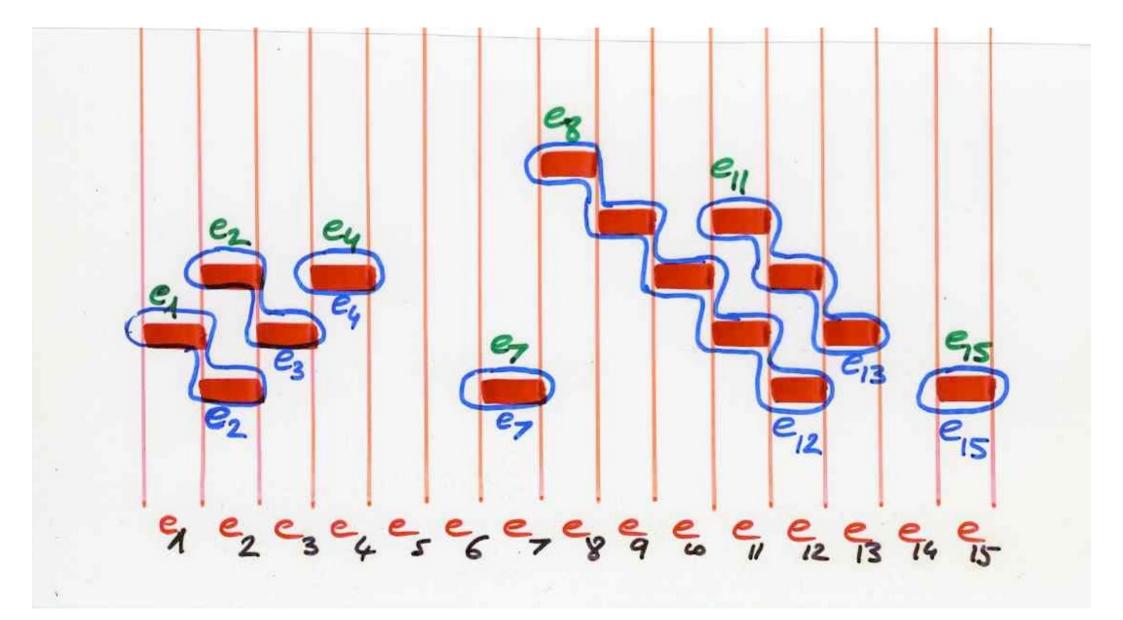


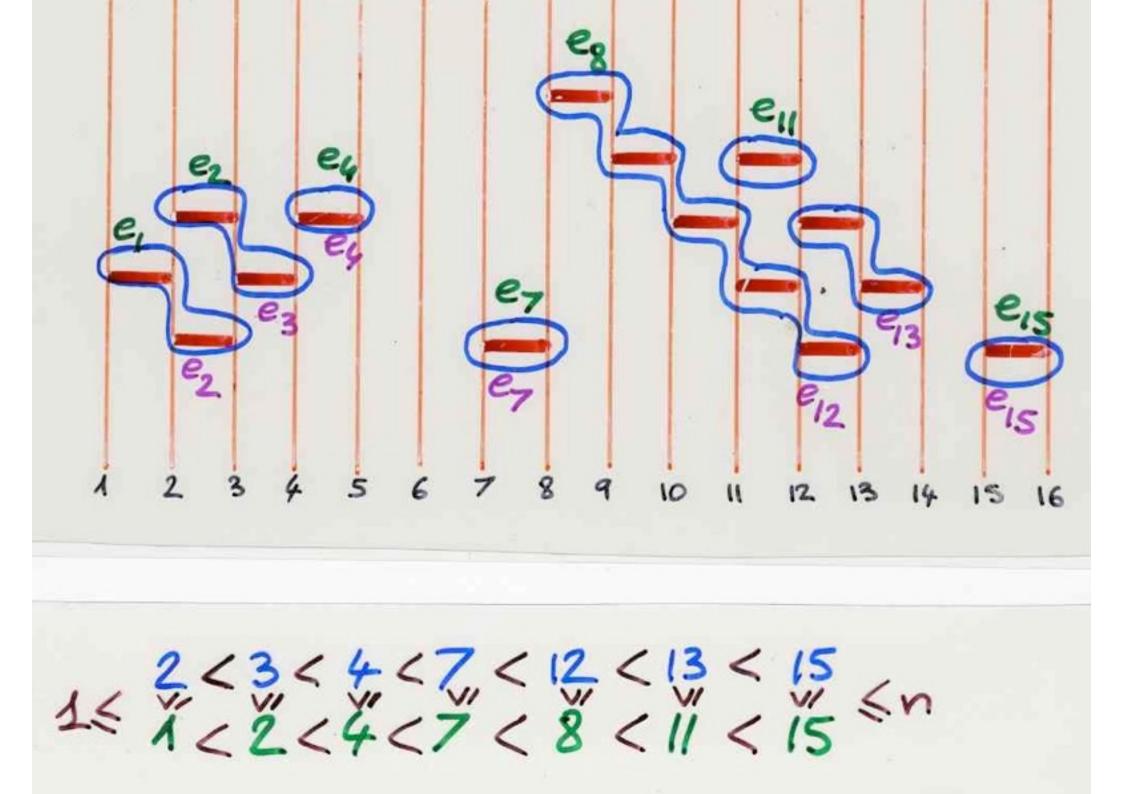


 $\implies \min(S_1) \prec \cdots \prec \min(S_k)$ ø $\max(S_i) \prec \cdots \prec \max(S_i)$ ø

fully commutative heaps (of dimers)



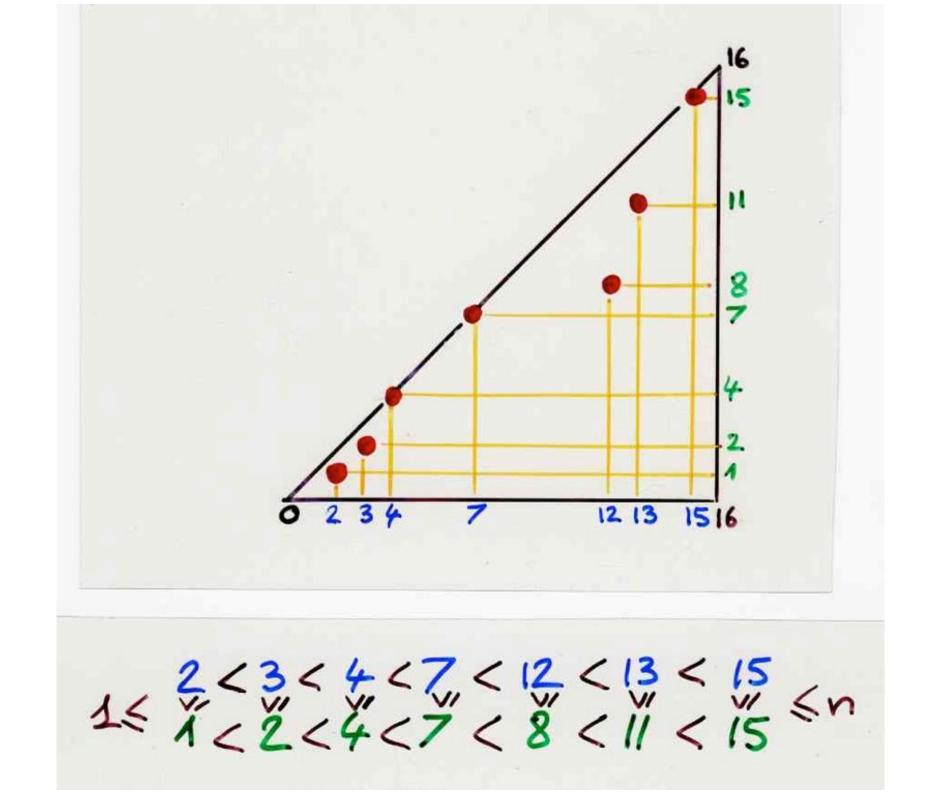


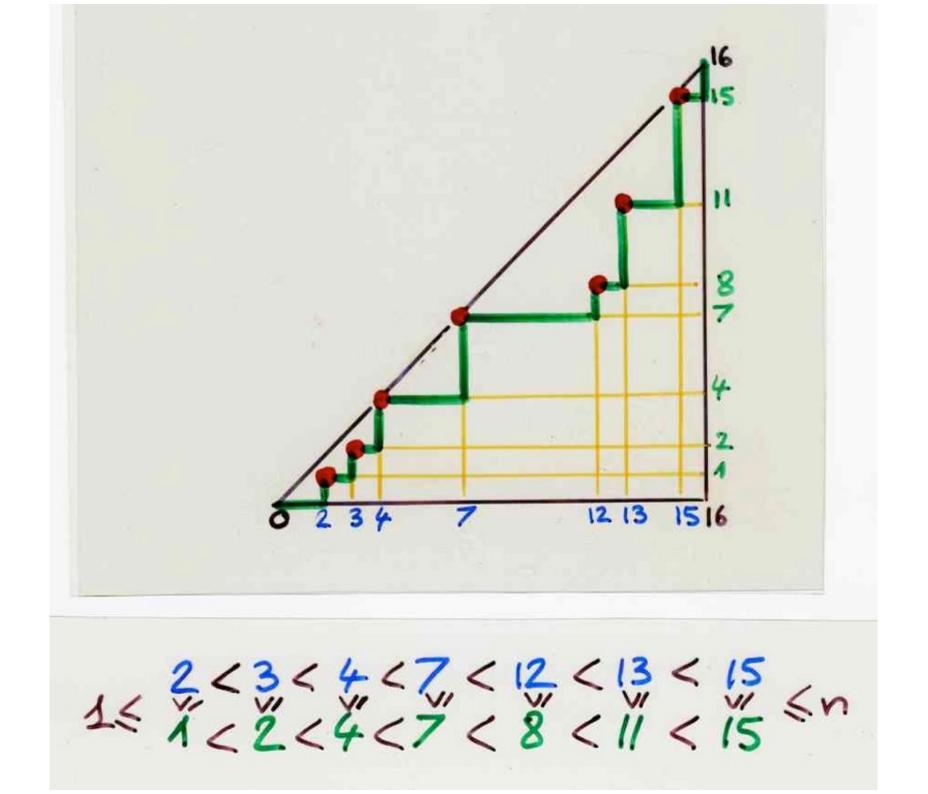


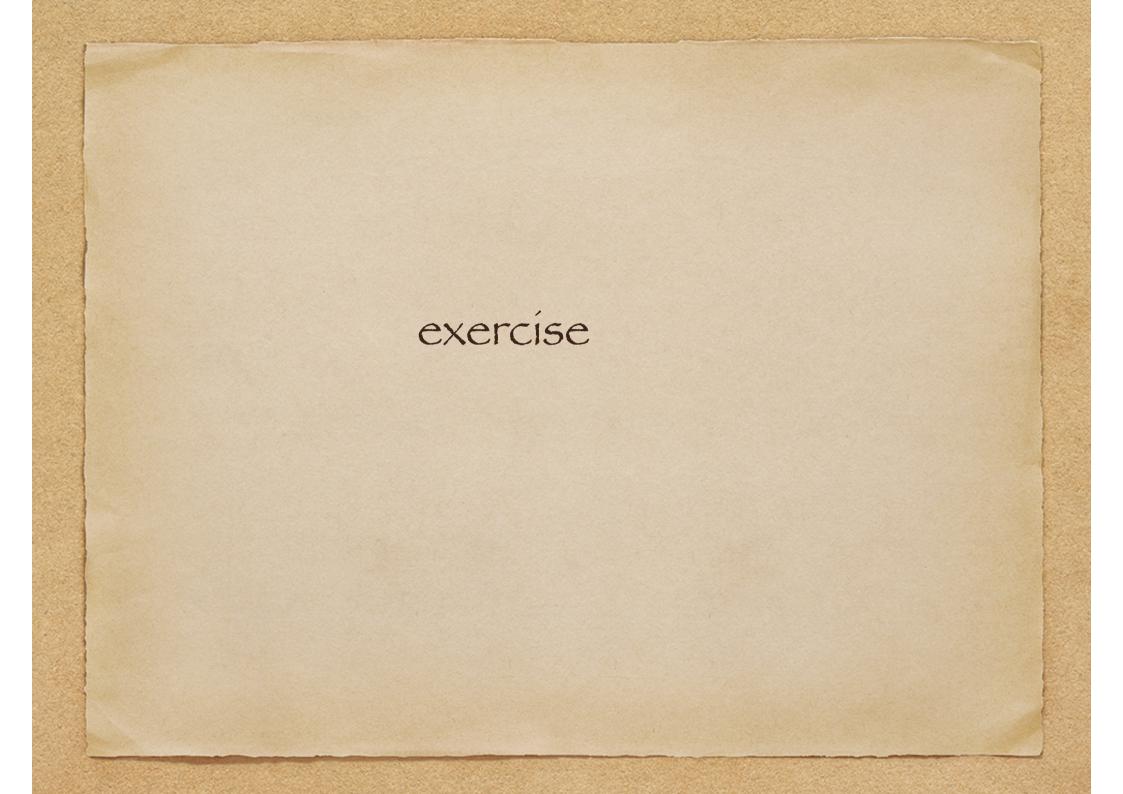
bijection

fully commutative heaps

Dyck paths

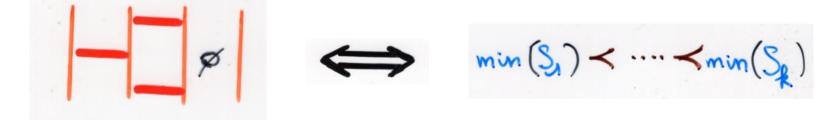


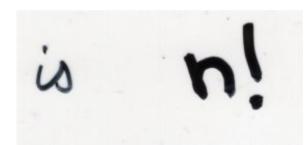


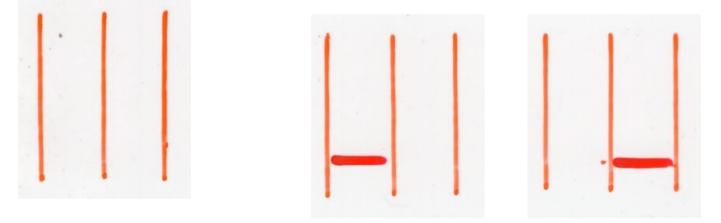


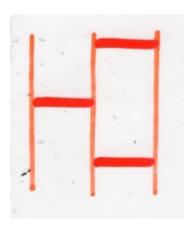
exercise

The number of strict heaps satisfying the condition:





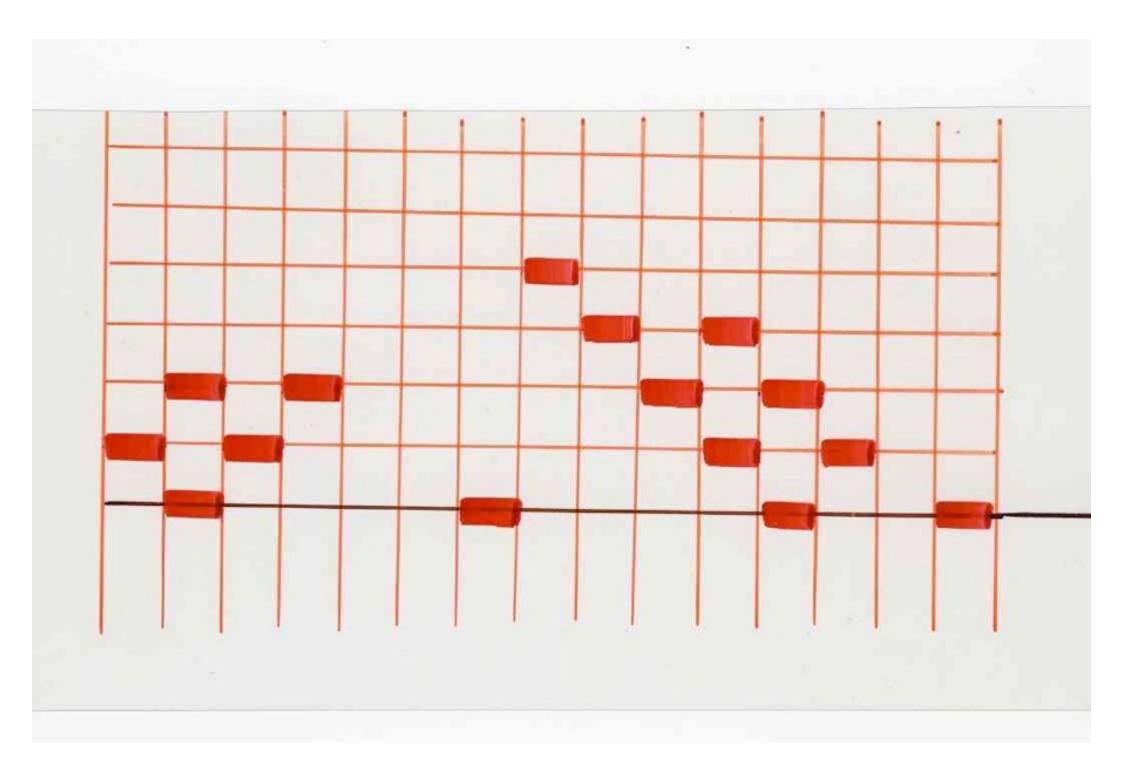


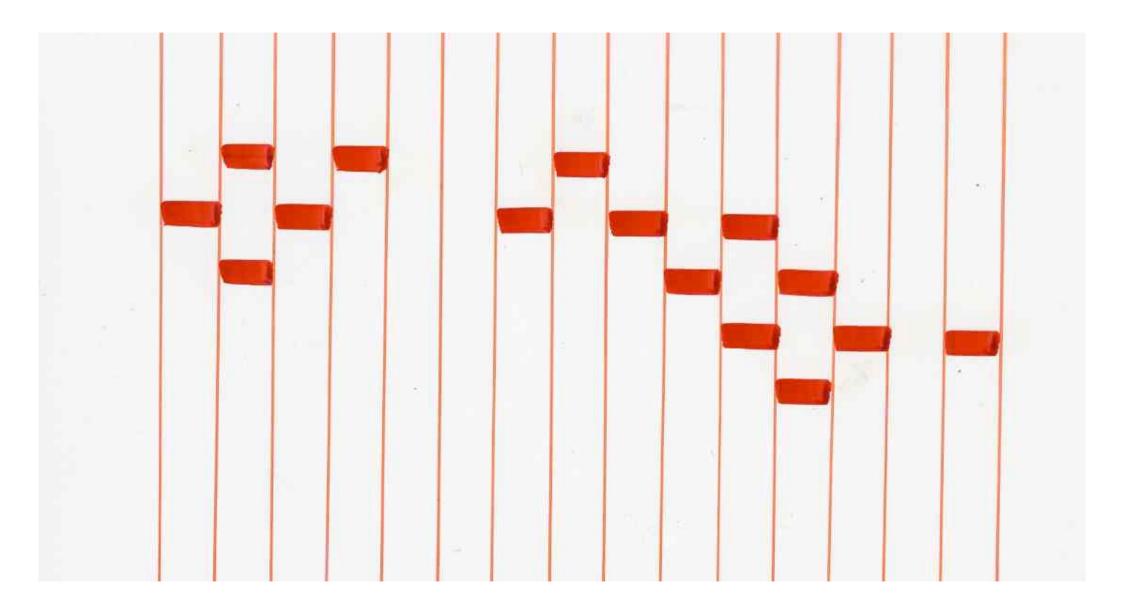


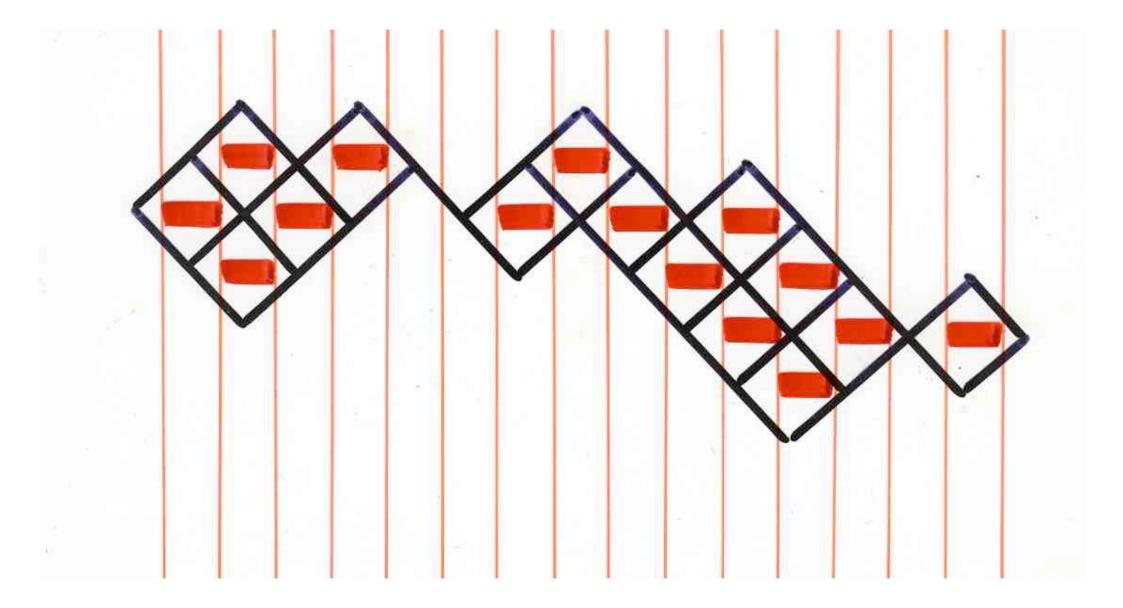
bijection

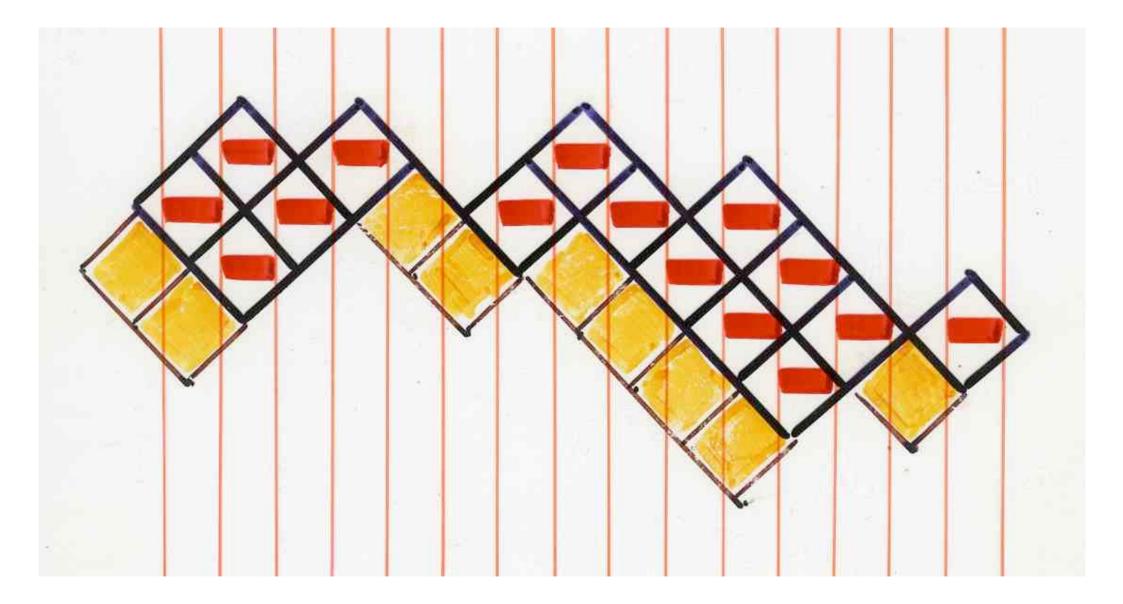
fully commutative heaps

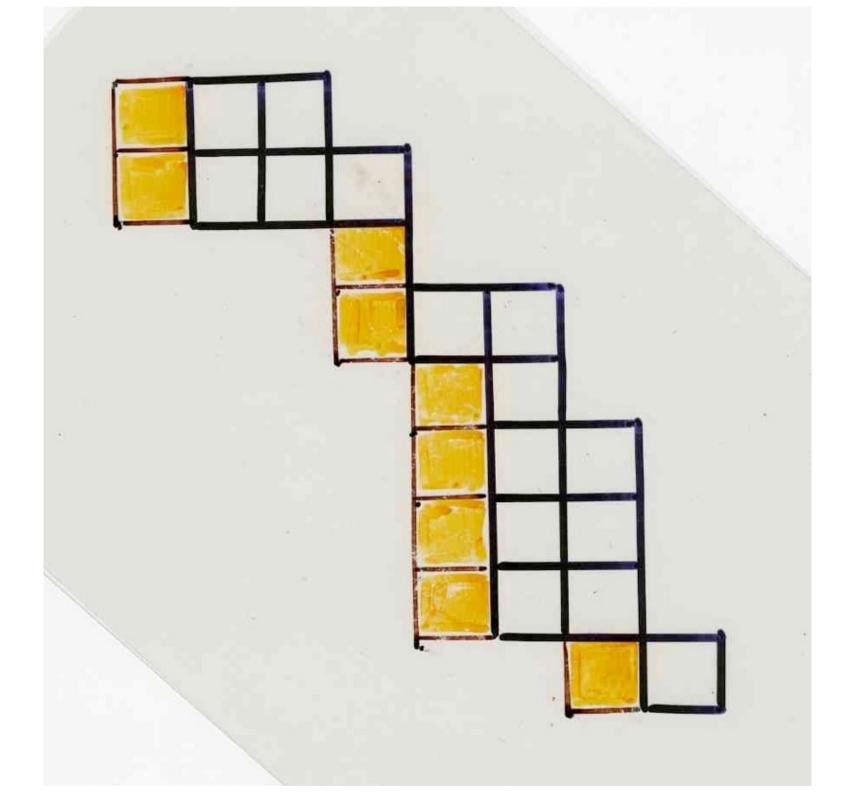
parallelogram polyomínos (staírcase polygons)

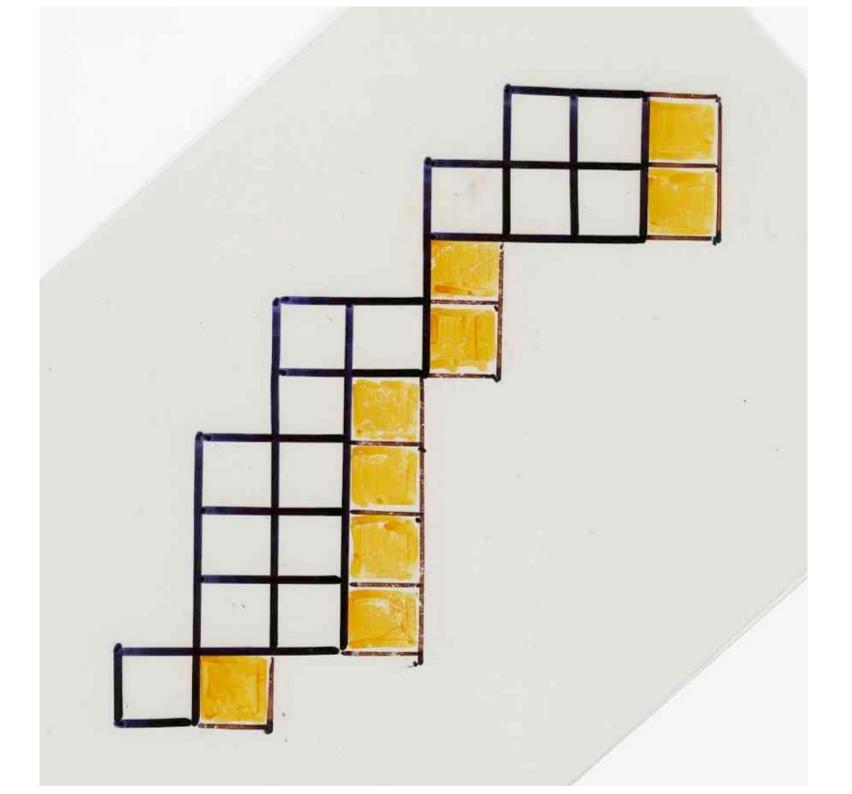


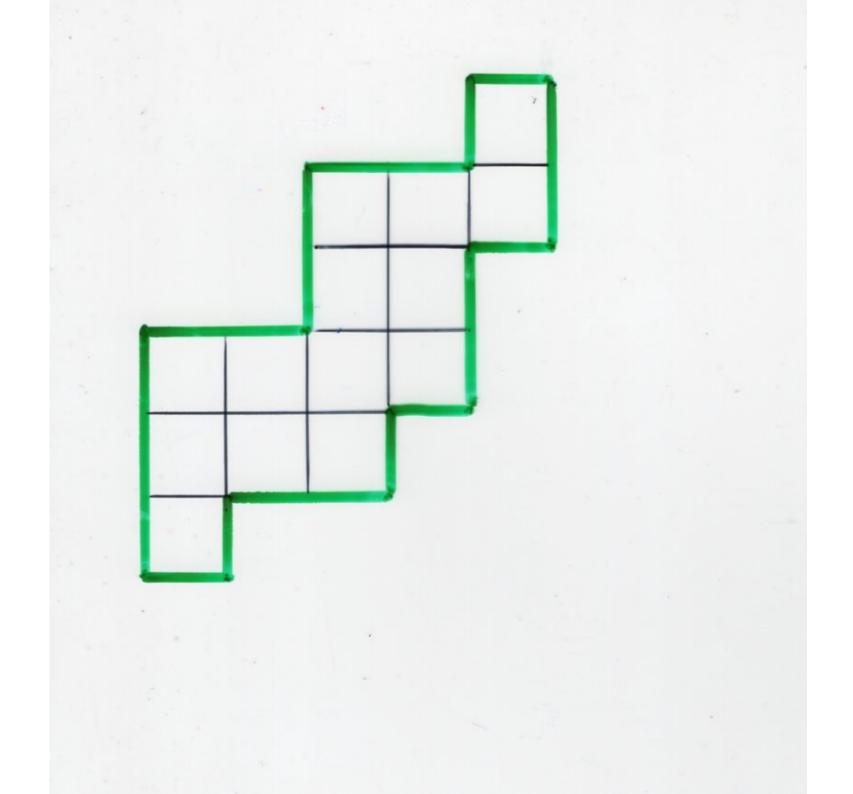






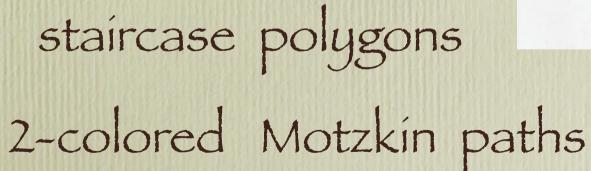


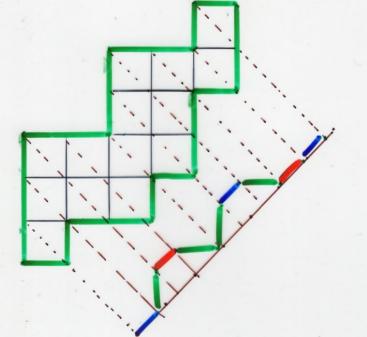




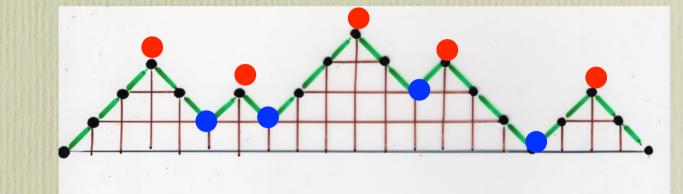
cours IMSc 2016 Ch2a, p105-109

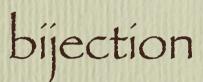
bijection



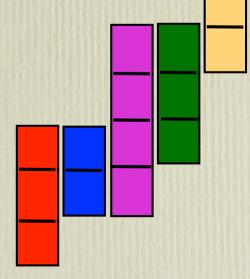


cours IMSc 2016 Ch2a, p110-116





staírcase polygons Dyck paths



 $H_n(q)$ G- Polya Catalan $H_1(q) = 1 + q$ $H_2(q) = 1 + 2q + 2q^2$ $H_{4}(q) = 1 + 3q + 5q^{2} + 4q^{3} + q^{4}$

$$H(q,t) = \sum_{n \ge 1} H_n(q) t^n$$
ratio $f = q - Bessel$
Delst, Fedou (1993)

-> see Ch7 heaps and statiscal mechanics 9-Bessel functions in physics

affine Coxeter groups Biagioli, Jouhet, Na dean (2014, 2015) ", Bousquet-Mellon (2016) Hanusa, Jones (2010)

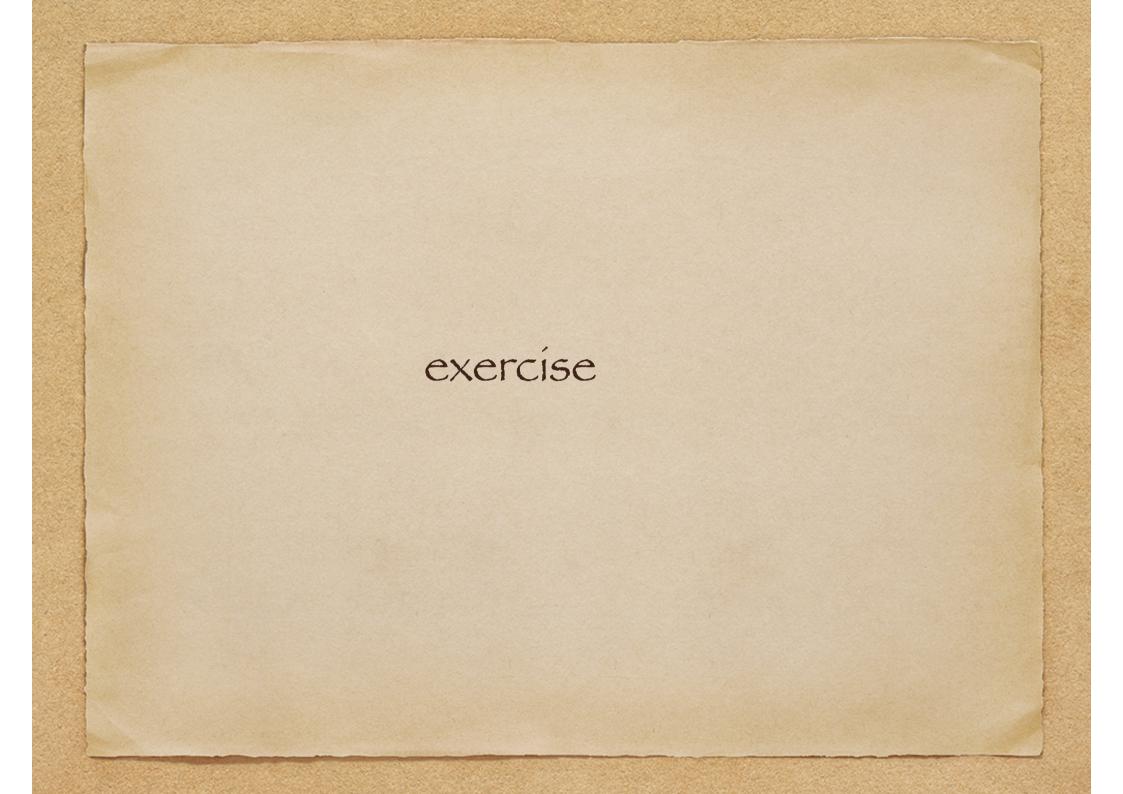
enumeration $\begin{cases} -number of FC elements \\ -q - enumeration \end{cases}$ $W(x,q) = \sum W_n(q)x^n$

n for the family An, Bn, Dn,

9 enumeration by the length l(w) of FC elements

Proposition Nadeau (2015) for any Coxeter group W,

W^{FC}(q) is a rational power series coeff. altimately periodic



Definition A heap H over the graph r is alternating iff for all s and t adjacent vertices of T, the fiber Hs, t the elements of the fiber Hs, to over 20, tf are alternatingly labeled s and t

[in (i) H, = TT= (23, 23) is a chain]

exercise Prove the following characterization of FC heaps over (An) H is FC iff H is alternating and the fibers H1 = TT-1(1) and H1=TT-1(n) have at most

