Course IMSc Chennaí, India January-March 2017

Enumerative and algebraic combinatorics, a bijective approach: commutations and heaps of pieces (with interactions in physics, mathematics and computer science)

Monday and Thursday 14h-15h30
www.xavierviennot.org/coursIMSc2017

IMSc
January-March 2017
Xavier Viennot
CNRS, LaBRI, Bordeaux
www.xavierviennot.org

Chapter 3

Heaps and Paths,
Flows and Rearrangements monoids
(2)

IMSc, Chennai
30 January 2017
flow monoid $F(X)$ (on X)

- X set
- $\underset{\substack{\text { Enic } \\ \text { piecs }}}{P}=\underset{\text { alphalet }}{A}=\{(i, j)\}_{\substack{i \in X \\ j \in X}}$
- $\mathcal{\substack { \text { depentency } \\ \text { for concumeny, ulation: } }}$

$$
A=X \times X \quad\binom{i}{j}
$$

[W] equivalence less of biwords

$$
(i, j) \in\left(i^{\prime}, j^{\prime}\right) \Leftrightarrow i=i^{\prime}
$$

$$
w=\left(\begin{array}{lllllllll}
1 & 3 & 2 & 3 & 1 & 3 & 2 & 1 & 3 \\
3 & 3 & 3 & 3 & 1 & 1 & 1 & 2 & 2
\end{array}\right)
$$

C commutations

$$
(i, j)\left(i^{\prime}, j^{\prime}\right)=\left(i_{j}^{\prime}, j^{\prime}\right)(i, j) \text { iff } i \neq i^{\prime}
$$

$$
X=\{1,2,3\} \text { flow }
$$

$$
\begin{aligned}
& \text { total order } \\
& \text { on } X \\
& w=\left(\begin{array}{llllllll}
1 & 3 & 2 & 3 & 1 & 3 & 2 & 3 \\
3 & 3 & 3 & 3 & 1 & 1 & 2 & 2
\end{array}\right) \\
& w \equiv \vec{c} \vec{w}
\end{aligned}
$$

heap of "half-edges"
(i, j) for \mathcal{E}
"arrow"

$$
\overrightarrow{b_{i}} \overrightarrow{\text { word }}=\left(\begin{array}{lllllllll}
1 & 1 & 1 & 2 & 2 & 3 & 3 & 3 \\
3 & 1 & 2 & 3 & 3 & 3 & 1 & 3
\end{array}\right)
$$

path on X

$$
\begin{gathered}
\omega=\left(s_{0}, \ldots, s_{i}, s_{i+1}, \ldots, s_{n}\right) \\
s_{i} \in X \quad i=0, \ldots, n
\end{gathered}
$$

weight $v(\omega)=\prod_{0 \leqslant i \leqslant n-1} v\left(s_{i}, s_{i+1}\right)$

$$
\begin{aligned}
X=[1, k] \quad & a_{i, j}=V(i, j) \\
& A=\left(a_{i j}\right)_{1 \leqslant i^{\prime} j \leqslant k}
\end{aligned}
$$

Path ω on X

$$
(\Lambda, \Phi) \xrightarrow{h} \omega \text { path }
$$

algorithm "following" a flow $\Phi \in F(X)$
algorithm "following"
a flow $\Phi \in F(X)$

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 3
\end{array}\right)\left(\begin{array}{|l|l}
2 & 2 \\
3
\end{array} \left\lvert\,\left(\begin{array}{|l|ll}
3 & 3 & 3 \\
6
\end{array}\right)\left(\begin{array}{llll}
4 & 4 & 4 & 4 \\
6 & 3
\end{array}\right)\left(\begin{array}{lll}
5 & 5 & 5 \\
6 & 2 & 5
\end{array}\right)\left(\begin{array}{lll}
6 \\
4 & 6 & 5
\end{array}\right)\left(\left.\begin{array}{l}
6 \\
6
\end{array} \right\rvert\,\right.\right.\right. \\
h(1, \Phi)
\end{gathered}
$$

definition Φ flow $F(X)$
I rearrangement iff

$$
\begin{aligned}
& \text { for any } s \in X \\
& \operatorname{deg}_{\Phi}^{+}(\Delta)=\log _{-1}^{-}(\Delta) \\
& \operatorname{deg}_{\Phi}^{+}(s)= \begin{cases}\text { number of } \\
t \in X, \text { in } \Phi\end{cases} \\
& \operatorname{deg}_{\Phi}^{-}(s)=\left\{\text { nummere }_{t \in X} \text { in } \text { fod }_{\Phi} \text { ess }\binom{t}{s}\right\}
\end{aligned}
$$

to

$$
R(x) \subseteq F(x)
$$

$R(X)$ submonoid of $F(x)$

(from Chapter Ld)
here circuit $=$
path $\left(s_{0}, \cdots, s_{n}\right)$
with $s_{0}=s_{n}$
elementary circuit $\omega=\left(s_{0}, \ldots, s_{n}\right)$ with $s_{0}=s_{n}$, all vertices are disjoint except $s_{0}=s_{n}$.

Cycle $=$ elementary circuit up to a circular permutation of the vertices

pointed cycle

cycles of a permutation

$$
\begin{aligned}
& \text { sometimes } \\
& \text { cycle }=\text { circuit } \\
& \text { up to circular } \\
& \text { permutation }
\end{aligned}
$$

our cycle are called elementary
cycle
heaps of cycles on $X \quad H C(X)$
monoid
basic pieces: cycles on X

dependancy relation γ^{\prime} ©
of $\operatorname{supp}(\gamma) \cap \operatorname{supp}(\gamma) \neq \varnothing$

$$
E=\gamma_{1} \odot \cdots \odot \gamma_{k}
$$

$$
f(E)=f\left(ब_{9}\right) \circ \cdots \circ f\left(\gamma_{k}\right)
$$

Proposition The map $f: H C(x) \rightarrow R(x)$ is an isomorphism from the heaps of cycles monoid to the rearrangements monoid

Construction of the reciprocal isomorphism $g=f^{-1}$

$$
H C(x) \simeq R(x)
$$

$H C(x) \simeq R(x)$

$$
\left(\begin{array}{lllllllll}
1 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 3 \\
3 & 1 & 2 & 3 & 1 & 3 & 3 & 1 & 2
\end{array}\right)
$$

Construction of the reciprocal isomorphism

$$
g=f^{-1}
$$

algorithm "following"
a flow $\Phi \in F(X)$

variation of the proof rearrangements $=$ heaps of cycles

What do you "see" above:

- a (general) flow $F \in F(x)$
- a rearrangement $\Phi \in R(x)$
in other words:
describe the combinatorial structure made with the max (resp. min) oriented edges of the respective flow
above (or below)
a flow $F \in F(x)$

the max edges of F formed an endofonction of Y ie. a $\operatorname{map} \varphi: Y \rightarrow Y$

$$
\begin{aligned}
& Y=\operatorname{supp}(F) \\
& \text { support }
\end{aligned}
$$

$Y \subseteq X$ set of vertices $s \in X$ covered by the flow F ice. $\exists t$, such that $(s, t) \in F$
above (or below)
a flow $F \in F(x)$

the max edges of F formed an endoforition of y ie. a $\operatorname{map} \varphi: Y \rightarrow Y$
correction to the slide in the video of the course:
if $F \in R(x)$
there exist at least one cycle in the endofonction φ

$$
\begin{gathered}
X=\{1,2,3\} \\
\left(\begin{array}{lllllllll}
1 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 3 \\
3 & 1 & 2 & 3 & 1 & 3 & 3 & 1 & 2
\end{array}\right)
\end{gathered}
$$

Construction of the reciprocal isomorphism

$$
g=f^{-1}
$$

algorithm "following"
a flow $\Phi \in F(X)$

$$
g(F)=\gamma_{1} 0 \cdots \gamma_{k} \in H C(x) \quad f\left(\gamma_{1}\right) \cdots f\left(\gamma_{k}\right)=F
$$

remark on the species endofunction

themax edges of F formed an endoforicion of y ie. a $\operatorname{map} \varphi: Y \rightarrow y$
as species : substitution of the species arforescence into the spelter permutation
arlorescence $=$ pointed trees ("Coyly tree.")

$$
n^{n-2}
$$

ex. Endofonctions
End $=S \circ A$

为
exercise
Prove that every commutation monoid is isomophic to a submonoid of a rearrangement monoid $R(X)$
paths and heaps of cycles

Bijection $u, v \in X$

going from u to v

- n self-avoiding path going
- E heap of cycles such that the projections $\alpha=\pi(\mathrm{m})$ of the maximal pieces intersect η (α and η has a common vertex) for any $s, t \in X$
the numbers of occurrences of the edge (s, t) in $C u$ and in

$$
\Rightarrow \quad v(\omega)=v(\eta) v(E)
$$ (η, E) are the same.

The bjection X

- suppose $\left\{\begin{array}{l}\operatorname{Cut}_{T}(\omega)=\left(s_{0}=u, \ldots, s_{i_{T}}\right) \\ E_{T}(\omega) \text { heap of cycles }\end{array}\right.$
(i) if $s_{T+1} \notin \operatorname{Cu} t_{T}(\omega)$

$$
\left\{\begin{aligned}
C_{T+1}(\omega) & =\left(s_{0}=u, \ldots, s_{i_{T}}, s_{T+1}\right) \\
E_{T+1}(\omega) & =E_{T}(\omega)
\end{aligned}\right.
$$

(ii) if $s_{T+1} \in \operatorname{Cut}_{T}(\omega), s_{T+1}=s_{k}$

$$
\left\{\begin{aligned}
C_{T+1}(\omega) & =\left(s_{0}=u, \ldots, s_{k}\right) \\
E_{T+1}(\omega) & =E_{T}(\omega) \odot \gamma \\
& \dot{\gamma}=\left(s_{k}, \ldots, s_{i_{T}}, s_{T+1}=s_{k}\right)
\end{aligned}\right.
$$

$$
\begin{array}{r}
\stackrel{\chi}{\longrightarrow}(\eta, E) \\
\eta=\operatorname{cut}_{n}(\omega) \\
E=E_{n}(\omega)
\end{array}
$$

$$
\omega \rightarrow\left(\eta ;\left(\dot{\gamma}_{1}, \ldots, \dot{\gamma}_{r_{n}}\right)\right)
$$

self -avoiding path $u \leadsto v$
sequence of pointed cycles
from the pair $\left(\eta ;\left(\dot{\gamma}_{1}, \ldots, \dot{\gamma}_{r_{n}}\right)\right)$
we can reconstruct the path w

$$
\begin{gathered}
\left(\dot{\gamma}_{1}, \ldots, \dot{\gamma}_{r_{n}}\right) \rightarrow E=\gamma_{1} \odot \cdots \odot \gamma_{r_{n}} \\
\omega \longrightarrow(\eta, E) \quad \begin{array}{c}
\text { heaps of cycles on } X \\
\text { monoid }
\end{array}
\end{gathered}
$$

reverse

Lemma

$$
f(\omega)=f(E) f(\eta)
$$

"following" the flow $f(E) \circ f(\eta)$, starting at s_{0}, gives back ω
"breaking" paths and heap of cycles
second bijection
"gluing" bijections

Circuit
path $\omega=\left(s_{0}, \ldots, s_{n}\right)$ with $s_{n}=s_{0}$

Corollary Cirmits on X are in bijection with pointed pyramids of cycles
= the unique cycle maximal piece has a distinguished vertex (or edge)
η is reduced to the

The bijection X for circuits $\begin{gathered}u=v\end{gathered}$

pointed cycles pyramid
an example with Dyck paths

see the animation on the video

violin:
G. Duchamp

exercise $\frac{1}{\text { For bilateral Dyik paths }}$ explicit the general bijection and its reciprocal
$\omega \longrightarrow$ pointed pyramid oof cycles of length 2)
(or pyramids of dimers on \mathbb{Z})

Definition non-backtracking path iff no pair of consecutive elementary step

$$
\left(s_{i}, s_{i}+1\right)\left(s_{i+1}, s_{i}\right)
$$

backtrack
exercise 1
(i) ω is non-backtracking
(ii) the heap E has no cycles of length 2
definition G graph, X co path on G with $\omega \longrightarrow(\eta, E)$. ω is tree-like iff the heap E contains only ayes of length 2 .

Godsil (1981)

Particular cases.

- Dyak path
bilateral Dyck......... paths on a tree
paths

definition G graph, X co path on G with $\omega \longrightarrow(\eta, E)$. ω is tree-like of the heap E contains only ayes of length 2 .
exercise 3 graph, s vertex of G Construct a tree Touch that the tree-like paths on G starting at s are in bijection (preserving the length) with the pathos on T starting $a t$ the root of T

complements

LERW

"Loop-erased random walks"

LERW
Loop-erased random wabk
Lawler (1980)

w random path on X

Markev chain

probability law on η

$$
\begin{aligned}
& \angle E R W \rightarrow \text { SHE } 2 \\
& \text { Schramm-Lowner } \\
& \text { evolution }
\end{aligned}
$$

length $n^{5 / 4}$ of a
scaling limit of random planar curves

$$
\left\{\begin{array}{l}
\text { LERW loop-erased random walk } \\
\text { - ASM abclian sandpile model } \\
\text { dimer model }
\end{array}\right.
$$

spanning tree
two amazing facts

- -

same probability on law and $7 \frac{5}{7}$
graph $G=(V, E) \quad V=\left\{s_{1}, s_{2}, \ldots.\right\}$
W valuation $\quad A=\left(a_{i j}\right)$

$$
w\left(s_{i}, s_{j}\right)=a_{i j}
$$

$\omega\left(\begin{array}{l}\text { walk } \\ \text { path })\end{array}\right.$ on $G(\omega)$

$$
\begin{aligned}
& \underset{\substack{u \sim v \\
u, v \in V}}{ } \underset{\text { loops }}{\text { erasing }} \underset{\substack{\text { seff_avoiding } \\
\text { walk }}}{ } v(\eta)=\sum_{\substack{\omega \sim v \\
\omega \rightarrow \eta}} w(\omega)
\end{aligned}
$$

The advantage "or gamic" of \cdot. combinatorics

spanning tree of a graph $G=(V, E)$

spanning tree of a graph $G=(V, E)$

spanning tree oof G with uniform probability
spanning tree
of a graph $G=(V, E)$

spanning tree oof G with uniform probability

$$
u, v \in V
$$

unique path ω $u \rightarrow v$ on the tree T.
same probability law as a $\angle E R W$ Univ on G

Figure 1.1: The LERW in the UST.
for path $\omega \rightarrow f(\omega) \in F(x)$

- what do you "see" a love $f(\omega)$

for path $\omega \rightarrow f(\omega) \in F(x)$
- what do you "see" above
- " yo you" "sea below $f(\omega)$
 spanning on supp (ω)

research problem 1
- Prove the equivalence
$\left\{\begin{array}{l}\text { - UST uniform spanning tree } \\ \text { - LERW for } \eta\end{array}\right.$
\{- LERW for η uni using the thewy of heaps
- Is $T(\omega)$ a UST on $\operatorname{supp}(\omega)$?

complements

Wilson's algorithm
for
uniform random spanning tree

Figure 1.1: The LERW in the UST.

Wilson's algorithm

Wilson's algorithm animation: see the video

by Mike Rostock

https://bl.ocks.org/mbostock/11357811

Research problem 2

- Take a random path C_{T} on $E=(X, E)$ starting at $u \in X$.

$$
\begin{aligned}
& \omega_{T}=\left(s_{0}=u, \cdots, s_{T}\right) \\
& \omega_{T} \longrightarrow\left(\eta, \eta_{T}\right)
\end{aligned}
$$

- war each $T=0,1, \ldots$ we get a spanning tree To the support of ω_{T} by taking the maximal edges of the flow F_{T}

$$
F_{T}=f(\omega)_{T}=f\left(\eta_{T}\right) f\left(E_{T}\right)
$$

- when the support of ω_{T} is X, we stop and get a spanning tree of X
- when the support of ω_{T} is X, we stop and get a spanning tree of X
a) Is it a uniform random spanning tree?

$$
\text { of } G=(X, E)
$$

b) Compare this "organic" algorithm with Wilson's algorithm

