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“local” algorithm  on  a  grid 
or  “growth  diagrams”

S. Fomin, 1986, 1994

M. van  Leeuwen, 1996
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- in the grid, for cell, δ is obtained from β by adding a cell, or is equal to β

α

β

γ

δ

- in the grid, for cell, δ is obtained from  γ by adding a cell, or is equal to  γ

- in the labeling process of the vertices of the grid with Ferrers diagrams : 
            independance of the order in which the labeling is done
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- in the grid, for cell, δ is obtained from β by adding a cell, or is equal to β
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- in the grid, for cell, δ is obtained from  γ by adding a cell, or is equal to  γ

- in the labeling process of the vertices of the grid with Ferrers diagrams : 
            independance of the order in which the labeling is done

- in the last rows and last columns:  
-                 we get maximal chains of Ferrers diagrams
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α

β

γ

δ

- in the grid, for cell, δ is obtained from  γ by adding a cell, or is equal to  γ

- in the labeling process of the vertices of the grid with Ferrers diagrams : 
            independance of the order in which the labeling is done

- in the last rows and last columns:  
-                 we get maximal chains of Ferrers diagrams





- in the grid, for cell, δ is obtained from β by adding a cell, or is equal to β
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- in the grid, for cell, δ is obtained from  γ by adding a cell, or is equal to  γ

- in the labeling process of the vertices of the grid with Ferrers diagrams : 
            independance of the order in which the labeling is done

- in the last rows and last columns: we get maximal chains of Ferrers diagrams

- these maximal chains encode a pair (P,Q) of Young tableaux of 
the same shape
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- in the grid, for cell, δ is obtained from β by adding a cell, or is equal to β

α

β

γ

δ

- in the grid, for cell, δ is obtained from  γ by adding a cell, or is equal to  γ

- in the labeling process of the vertices of the grid with Ferrers diagrams : 
            independance of the order in which the labeling is done

- in the last rows and last columns: we get maximal chains of Ferrers diagrams

- these maximal chains encode a pair (P,Q) of Young tableaux of the same shape

- the process can be reversed, from the pair  (P,Q), get back  the 
permutation
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permutation the  pair  (P,Q)



- in the grid, for cell, δ is obtained from β by adding a cell, or is equal to β
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- in the grid, for cell, δ is obtained from  γ by adding a cell, or is equal to  γ

- in the labeling process of the vertices of the grid with Ferrers diagrams : 
            independance of the order in which the labeling is done

- in the last rows and last columns: we get maximal chains of Ferrers diagrams

- these maximal chains encode a pair (P,Q) of Young tableaux of the same shape

- the process can be reversed, from the pair  (P,Q), get back  the permutation

- this bijection is the same as the Robinson-Schensted correspondance







   proof  of  the  equivalence 
local  RSK   and  geometric RSK 
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complement:

Sergey  Fomin 
(with C. K.)

  combinatorial  representation  of  the  algebra

DU=UD + Id
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Physics

UD = DU + Id 
Weyl-Heisenberg

commutations 
rewriting  rules

combinatorial 
objects  

on a  2d  lattice

representation 
by  operators

permutations 

bijections

quadratic  algebra  Q

RSK
"normal ordering"

planarization

"The  cellular  Ansatz"

pairs of Tableaux Young 

RSK automata

Q-tableaux

see  the  course
« Quadratic  algebra  
and  combinatorics »



oscillating  tableaux





see  Ch4b







2-colored

involutions on 2n  
with  2-colored fixed points

sequences of 2n  
2-colored oscillating tableaux 

starting and ending at  ∅

Rook   placements 













W.Chen, E.Deng, R. Du, R. Stanley, C. Yan 
 arXiv:math.CO/0501230. Trans.A.M.S. (2005)



RS   à   RSK

extension   
to  matrices

D. Knuth, 1970
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