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Abstract. This paper shows how to uniformly associate Lie algebras to the simply-laced Dynkin
diagrams excluding E8 by constructing explicit combinatorial models of minuscule representations
using only graph-theoretic ideas. This involves defining raising and lowering operators in a space
of ideals of certain distributive lattices associated to sequences of vertices of the Dynkin diagram.

1. Introduction

Our goal is to show how to (almost) uniformly construct the simply-laced Lie algebras using
only graph theoretic ideas from the Dynkin diagrams. We will thus construct the Lie algebras
corresponding to An, Dn, E6 and E7 using a method which is independent of type. The only case
not covered is that of E8, for which more sophisticated techniques must be used.

Apart from the generators and relations approach of Serre, (which constructs a generating set
but not a basis), the only general construction of exceptional Lie algebras known to this author is
that of Tits [14].

Technically no knowledge of Lie theory is assumed. Root systems are introduced in a simple
fashion by examining mutation/reflection operators on graphs, in the spirit of affine Lie algebras
([3], [4], [6]). This approach is dual to the numbers game as studied recently by Proctor [10], and is
systematically developed in [16].

We associate labelled distributive lattices called heaps (this terminology follows Viennot [15]) to
particular graphs and construct representations of Lie algebras by raising and lowering operators on
spaces of ideals of heaps.

The posets occurring are related to Bruhat orders in Coxeter groups ([7]), minuscule represen-
tations ([2], [8], [13]), the geometry of Schubert cells ([7], [12]), conformal field theory ([5]), and
combinatorics ([9], [11]) . This paper provides another approach to their study using only graph
theoretical considerations.

One of the key points is the definition of a parity function (taking on values ±1) on certain convex
subsets of distributive lattices associated to sequences of vertices of a graph.

From our construction we are able to identify Chevalley bases of the corresponding Lie algebras,
clarify the associated structure constants, construct new models for spin representations and present
very explicit realizations of the exceptional Lie algebras E6 and E7. The theory here generalises, to
non simply-laced Dynkin diagrams, to Kac-Moody Lie algebras and to more general representations,
but some of this involves considerable additional development, still in progress.

2. Neighbourly heaps for a graph

Let X be a simple graph. By an X-sequence we mean a sequence s = (x1, . . . , xn) of vertices of
X. If we transform s to s′ by switching xi and xi+1 for some i then there are three possibilities:

(1) xi and xi+1 are neighbours in X—(an X-switch)
(2) xi and xi+1 are distinct and not neighbours—(a free switch)
(3) xi = xi+1—(a redundant switch).

Any X-sequence s′ obtainable from s by free switches is defined to be equivalent to s; we write
s ≃ s′ and let [s] denote the equivalence class of s, which we call an X-string. We refer to the
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xi in s = (x1, . . . , xn) as the occurrences in s; as occurrences they are considered distinct even if
as vertices of X there may be repetitions. We partially order the occurrences xi in s by declaring
xi < xj if i < j and xi, xj are neighbours in X. The resulting poset Ps is unchanged by free switches
and so depends only on the X-string [s]. We refer to Ps = P[s] as the X-heap of [s].

Proposition 2.1. The X-string [s] consists exactly of the total orderings of P[s] consistent with the
partial order.

If s and s′ are X-sequences with s′ obtainable from s by applying p X-switches and q free switches
then let ϵ(s, s′) = (−1)p.

Proposition 2.2. ε(s, s′) = (−1)p is well–defined, and depends only on [s] and [s′].

Thus ε(s, s′) = ε([s], [s′]). This quantity will be called the relative parity of the X-strings [s] and
[s′], or of the corresponding heaps P[s] and P[s′].

Example 1. Suppose X = An labelled as shown.

1 2 n − 1 n

· · ·

If we consider only X-sequences which are permutations of {1, . . . , n}, the associated heaps are
‘stock market graphs’ where each successive node is either up or down from the previous. We get
naturally a map from Sn to the set of sequences {(ε1, . . . , εn−1) | εi = ±1} = T. It is natural to
ask for the distribution of this map: how many permutations map to a given t ∈ T ? When t is the
zigzag sequence alternating plus and minus one, this is known as André’s Problem, and the answer
is given by Euler numbers, or Entringer numbers. The general case is related to the number of skew
tableau of a ‘staircase’ shape.

Example 2. Suppose X = E6 labelled as shown

1 2 3 4 5

0

E6

The X-sequence s = (1, 2, 3, 0, 4, 5, 3, 2, 4, 3, 1, 0, 2, 3, 4, 5) has heap
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An X-sequence s = (x1, . . . , xn) will be called neighbourly if between any two consecutive occur-
rences of a vertex x there are at least two occurrences of some neighbour or neighbours of x. This
property is preserved by free switches, so we also speak of neighbourly X-strings and X-heaps.

A neighbourly X-sequence s will be called maximal if F cannot be extended by the addition of
a vertex x in any position to a larger neighbourly X-sequence s′, and similarly for X-strings and
heaps. The neighbourly E6-heap of Example 2 is maximal.

A neighbourly X-string or X-heap will be called two-neighbourly if there are exactly two occur-
rences of some neighbour or neighbours of x between any two consecutive occurrences of any vertex
x. The heap F (E6, 1) of Example 2 is two-neighbourly.

Recall that a lattice is a poset such that for a, b ∈ L the least upper bound a∨b and greatest lower
bound a ∧ b exist uniquely. When these operations satisfy the usual distributive laws, the lattice
is called distributive. If P is any poset, an ideal of P is a subset I such that x ∈ I, y ≤ x implies
y ∈ I. Let J(P ) denote the poset of all ideals of P ordered by inclusion. Then J(P ) is always a
distributive lattice, and any distributive lattice is of the form J(P ) for some poset P.

Proposition 2.3. If F is a maximal neighbourly X-heap for some graph X, then F is a lattice.

Recall the family of graphs Dn, and E7 and E8 labelled as shown

1 2 n − 2 n − 1
Dn

0

· · ·
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1 2 3

0

4 5 6
E7

1 2 3

0

4 5 6 7
E8

Theorem 2.1. Let X be a simple graph for which there exists a maximal neighbourly X-heap F
which is two-neighbourly. Then X is one of the graphs An, n ≥ 1, Dn, n ≥ 4, E6 or E7. There are
exactly n such X-heaps for An, three for Dn, two for E6 and one for E7. Each of the these lattices
is distributive.

We now describe these X-heaps, which we call minuscule. The curious terminology is motivated
by Lie theory and will be justified later.

a) The case An. We label the minuscule An-heaps F (An, k) k = 1, . . . , n. Hopefully the following
example will make the general case clear.

For n = 5
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b) The case Dn. The minuscule Dn-heaps are labelled F (Dn, 0), F (Dn, 1) and F (Dn, n− 1). The
following example for n = 5 should make the general case clear.
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The heaps F (Dn, 0) and F (Dn, 1) have the same triangular shape with n(n − 1)/2 elements,
while F (Dn, n − 1) consists of a square symmetrically placed between two chains, and has 2(n− 1)
elements.

c) The case E6. There are two minuscule E6-heaps labelled F (E6, 1) and F (E6, 5). The heap
F (E6, 1) appeared in Example 2. The heap F (E6, 5) has the same shape and is the inverse of
F (E6, 1).

d) The case E7. There is only one minuscule E7 heap labelled F (E7, 6).
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This lovely lattice, which we might call the swallow, is symmetric, spindle shaped, Sperner,
Gaussian and enjoys other interesting combinatorical properties (see [7], [9], [11]).

Note that in each case the graph X is an ideal of the minuscule X-heap and that the minimal
vertex appears in the label of that X-heap.

3. Roots of a simple graph

Let X be a simple graph. We will define a distinguished class of integer valued functions on the
vertices of X which we call the roots of X . Let P (X) denote the set of all integer valued functions
on X, with P+(X) and P−(X) the non-negative and non-positive functions in P (X) respectively.
For a vertex x, let δx denote the function which is 1 at x and 0 elsewhere. We call an element of
P (X) a population and refer to δx as a singleton population.

For each vertex x, define sx : P (X) → P (X) by

(psx)(y) =

⎧
⎨

⎩

p(y) if y ̸= x

∑
z∈N(x) p(z) − p(x) if y = x

where N(x) denotes the set of neighbours of x. Call sx the mutation-reflection at x.
There is a useful physical model for visualising such reflections. We may imagine X as representing

a pattern of cities and roads on Mars, which contains Martians and anti-Martians. If a Martian and
an anti-Martian appear together in a city, they mutually annihilate each other, so that each city
contains only Martians or anti-Martians or is empty. If a given city mutates, its inhabitants turn
to anti-inhabitants and simultaneously each neighbouring city sends a cloned copy of its population
into the mutating city.

A root population of X is any population obtainable from a singleton population by a sequence
of reflections sxi . We let R(X) denote the set of all root populations, and R+(X) = R(X)∩P+(X),
R−(X) = R(X)∩P−(X), the positive and negative root populations respectively. We refer informally
to root populations as roots.
Lemma 3.1. (1) s2

x = id for all x
(2) sxsy = sysx for all x, y which are not neighbours
(3) sxsysx = sysxsy if x, y are neighbours.

Proposition 3.1. The group W generated by all sx is a Coxeter group with the relations in the
previous Lemma as the only relations.
Proposition 3.2. R(X) is finite ⇔ W is finite ⇔ X is one of the graphs An n ≥ 1, Dn n ≥ 4, E6, E7

or E8.

Proposition 3.3. For any simple graph X, R(X) = R+(X) ∪ R−(X).
This last rather remarkable result is a consequence of the theory of Coxeter groups; the author

knows of no direct combinatorial proof (sadly).
We say X is an ADE graph iff it is in the list in Proposition 3.2. For such graphs, the set of roots

is a root system of classical type. To connect our discussion with the usual approach, we define an
inner product ( , ) on P (X) for general X by

(δx, δy) =

⎧
⎨

⎩

2 if x = y
−1 if x and y are neighbours

0 otherwise

Lemma 3.2. For p, q ∈ P (X) and x a vertex of X

(p, q) = (psx, qsx).

Proposition 3.4. ( , ) is positive definite ⇔ X is of ADE type.



A COMBINATORIAL CONSTRUCTION FOR SIMPLY–LACED LIE ALGEBRAS 7

Thus for X an ADE graph, R(X) is a finite root system in the usual sense since each sx is
indeed the reflection in the hyperplane determined by δx and preserves R(X). It seems interesting
to inquire as to the properties of the root systems R(X) for general graphs. For example, to what
extent does the following generalise?
Proposition 3.5. If X is an ADE graph, then

R(X) = {p ∈ P (X) | (p, p) = 2}.

4. Constructions of Lie algebras from minuscule heaps

Let X be an ADE graph with a minuscule X-heap F. A subset L of F is convex if ∀x, y ∈ L, any
z such that x < z < y is also in L. We will refer to convex subsets as layers. For any layer L of F,
define the content of L to be the population c(L)(x) = # times x appears in L.

For α ∈ R+(X), define a layer L to be an α-layer iff c(L) = α, and let Lα(F ) denote the set of
α-layers of F. For any subset S of F let I(S) = {x ∈ F | ∃y ∈ S, x ≤ y} be the ideal generated by
S. Partially order layers by declaring L1 ≤ L2 if L1 ⊆ I(L2).
Proposition 4.1. For any α ∈ R+(X), Lα(F ) is non-empty and contains a unique minimal α-layer
Lα with respect to the above partial order.

If L is any α-layer then we define ε(L) = ε(L, Lα), and call it the parity of L.
Now let VF = span{vI |I is an ideal of F}. For any layer L ⊆ F define operators XL and YL on

VF by

XL(vI) =

⎧
⎨

⎩

vI∪L if I ∪ L is an ideal and I ∩ L = φ

0 otherwise

YL(vI) =

⎧
⎨

⎩

vI\L if I ⊇ L and I\L is an ideal

0 otherwise.
For α ∈ R+, define operators Xα, Yα, and Hα on VF by

Xα =
∑

L∈Lα(F )

ε(L)XL

Yα =
∑

L∈Lα(F )

ε(L) YL

Hα(vI) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vI if ∃ α-layer L ⊆ I such that I\L is an ideal

−vI if ∃ α-layer L, such that I ∪ L is an ideal and I ∩ L = φ

0 otherwise.

For a vertex x of X , let us write Hδx = Hx.
Proposition 4.2. For any α ∈ R+,

Hα =
∑

x

α(x) Hx.

Thus the operators Hα, α ∈ R+ are not linearly independent. The main result is the following.
Theorem 4.1. Let X be a simple graph with minuscule X-heap F . Then the set of operators
{Xα | α ∈ R+}∪{Yα | α ∈ R+}∪{Hx | x a vertex of X} on VF is linearly independent and its span
forms a Lie algebra. This Lie algebra is simple, depends only on X, and is the usual Lie algebra
with Dynkin diagram X.
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The proof relies on some remarkable properties of both α-layers in minuscule X-heaps and the
parity functions ε(L).

Theorem 4.1 gives an explicit combinatorial construction of a Lie algebra g of operators on VF .
Furthermore the basis given in the Theorem is a Chevalley basis for g. All structure constants are
integers and can be explicitly read off from the minuscule heap using the formulae for Xα, Yα, Hα

above.
The particular representations so constructed coincide with the so-called minuscule representa-

tions for simply-laced Lie algebras, defined by the condition that all weight spaces are conjugate
under the Weyl group. The reason that we cannot construct E8 this way is that E8 has no minuscule
representations—the smallest representation is the adjoint representation which has the zero weight
space (with multiplicity 8) as well as the root spaces.

5. Examples

We will now give some brief descriptions of the representations constructed by this method.
This includes all the fundamental representations of sl(n), the two spin representations and the
standard representation of the even orthogonal Lie algebra so(2n), and the 27 and 56 dimensional
representations of E6 and E7 respectively.

a) The case An. For 1 ≤ k ≤ n the minuscule An-heap F (An, k) is the poset commonly known as
k × (n − k + 1).
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Shown is an ideal I in F (A7, 3). This ideal is specified by 3 numbers λ1 = 2, λ2 = 3, λ3 = 5
lying along the northeast lines as shown. A general ideal I in F (A7, 3) is determined by one of the
56 triples (λ1, λ2, λ3) satisfying

0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ 5.

In general there are
(

n + 1
k

)
solutions of 0 ≤ λ1 ≤ λ2 . . . ≤ λk ≤ n − k + 1 and so this is the

dimension of the corresponding representation of sl(n).
An α-layer is just a string of adjacent elements of the given substring defining α (what we called

a ‘stock market poset’ earlier). The minimal α-layer L is a subposet of the minimal copy of An in
F , and the parity of an arbitrary α-layer L is (−1)j where j is the number of bonds by which L
differs from L0.
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In the above diagram where α = δ3 + d4 + δ5 + δ6, the α-layer differs from Lα by just one bond so
has parity −1. Thus Xα(vI) = −vI∪L in this particular example, and Hα(vI) = −vI .

Note also that

H1(vI) = 0 H5(vI) = −vI

H2(vI) = vI H6(vI) = 0
H3(vI) = −vI H7(vI) = vI

H4(vI) = vI

and indeed Hα = H3 + H4 + H5 + H6.
Using Theorem 2.1 to compute structure constants we get for example that

[X1, X2] = −X12 [X12, X3] = −X123

[X1234, X5] = X12345 [X3, X4] = X34 etc.

Note that our Chevalley basis {Xα, Yα, Hx} and the corresponding structure equations of g depend
on k.

b) The case Dn. For Dn labelled as previously, we refer to the minuscule Dn-heaps F (Dn, 1) and
F (Dn, 0) as the spin-heaps. Applying the construction gives us the two spin representations of the
orthogonal groups. The results are completely general but we illustrate them with the case n = 5.
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F (D5, 1)

The lattice of ideals of F (D5, 1) is isomorphic to the E6-heaps F (E6, 1) or F (E6, 5), and contains
16 elements. In general the spin-heaps F (Dn, 1) and F (Dn, n − 1) have 2n−1 ideals, which is thus
the dimension of the corresponding (spin) representations. The Clifford algebra usually used to
define these representations is here encapsulated by the parity functions. Let’s illustrate the spin
representation by exhibiting the raising operator Xα for α = δ1 + 2δ2 + δ3 + δ4 + δ0. There are four
α-layers whose shapes are the following.



10 N. J. WILDBERGER

2

3

4

0

2

1 2

3

4

0

2

1

4

0

2

31

2

42

3

2

1

0

(The relative parity of these four layers is +, +,−,− respectively). Thus Xα acts in non-zero
fashion only on the four ideals directly below these layers, and sends each to ± the union with
the corresponding layer. Apart from the spin-heaps for D5 there is also the heap F (D5, 4) which
corresponds to the so-called ‘standard representation’ of dimension 10 of so(10). More generally
the Dn-heap F (Dn, n − 1) has a lattice of ideals isomorphic to F (Dn+1, n) with 2n elements, the
dimension of the corresponding standard representation of so(n).

c) The case E6. Each of the minuscule E6-heaps F (E6, 1) and F (E6, 5) have 27 ideals. The
corresponding 27 dimensional realizations of E6 are the smallest possible, and are related to the 27
lines on a cubic. The lattice of ideals of each of the above heaps is isomorphic as a distributive
lattice to F (E7, 6). Each of the 36 raising and lowering operators may be concretely visualised as
transformations of this lattice in that each node is sent to a multiple of another node or to zero.
Since in practice most of these operators are quite simple, it is not impossible with some patience
to represent the entire Lie algebra on a large copy of F (E7, 6) with signed arrows for the raising
operators between appropriate vertices.

d) The case E7. There is only one minuscule E7-heap, F (E7, 6), and it is not hard to count that
there are 56 ideals of this lattice, so the corresponding representation of E7 is 56 dimensional (also the
smallest possible). Each of the 63 raising and lowering operators may again be concretely visualised
as transformations of this lattice of ideals, which is related to E8.

These constructions are very explicit and amenable to investigation. They all have the rather
remarkable property that the Lie algebra has a basis for which the corresponding operators all act
on a basis of the representation space by transformations that in matrix form have at most one
non-zero element in each column, that non-zero element being either ±1.

In practice this means that the corresponding operators may be visualised acting on a lattice of
ideals by arrows between nodes with labels ±1. It is worth pointing out that the lattice of ideals in
each case is itself a distributive lattice, which with the exception of F (E7, 1) is one of the minuscule
lattices. This is part of a remarkable ‘cascading’ phenomenon which links all the root systems
together in a pleasant inductive pattern (see [16]). These remarks are related to observations of
Steinberg and Proctor (see [9]).

We leave it to the reader to experiment with these representations to find many further remarkable
features.
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