Course IMSC, Chennaí, India

January-March 2018

The cellular ansatz:

bijective combinatorics and quadratic algebra

Xavier Viennot
CNRS, LaBRI, Bordeaux
www.viennot.org

Chapter o

introduction to the course

IMSc, Chennaí
January 4, 2018

Xavier Viennot
CNRS, LaBRI, Bordeaux
www.viennot.org

This course is Part III of «The IMSc bijective combinatorics course»
"the art of bijective mathematics"

Each course can be followed independantly
Two levels:

- for master and graduate students
- for professors and more advanced students
under the name «complements» sometimes no proof

Part I: course IMSc 2016
An introduction to
enumerative, algebraic and bijective combinatorics

enumerative combinatorics

permutations

$$
\begin{aligned}
& \sigma=\left(\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
3 & 1 & 6 & 10 & 2 & 5 & 8 & 4 & 9 & 7
\end{array}\right) \\
&=1 \times 2 \times 3 \times \ldots \times n \\
&=n!
\end{aligned}
$$

binary tree

$$
C_{n}=\frac{1}{(n+1)}\binom{2 n}{n}
$$

Catalan numbers

complete binary tree

$$
C_{n}=\frac{1}{(n+1)}\binom{2 n}{n}
$$

Catalan numbers
enumerative combinatorics
example with the enumeration of
Young tableaux

$$
12=n=5+3+2+2
$$

Firers diagram

Partition of n λ

Young tableau
shape λ
$f_{\lambda}=$ number of $_{\text {of }}^{\text {Hound }}$ shape
hook length formula

A beautiful Identity

睹㽖田m

$$
\begin{aligned}
& 日_{\square} 日_{\square} \\
& 1^{2}+3^{2}+3^{2}+2^{2}+1^{2} \\
&= 1+9+9+4+1 \\
&= 24=4!
\end{aligned}
$$

$$
n!=\sum_{\substack{\lambda \\ p_{\text {piticins }} \\ \text { of } n}}\left(f_{\lambda}\right)^{2}
$$

$$
n!=\sum_{\substack{\text { patcing } \\ \text { of } \\ f_{n} n}}\left(f_{\lambda}\right)^{2}
$$

algebraic combinatorics

Representation theory of groups

Case of the group F_{n} permutations

finite group G

$$
|G|=\sum_{R}(\operatorname{deg} R)^{2}
$$

irreducible representation
for the symmetric (permutations)

$$
n!=\sum_{\substack{\lambda \\ \text { partition } \\ \text { of } n}}(f \lambda)^{2}
$$

Bijective combinatorics

$$
\begin{aligned}
& \sigma=\left(\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
3 & 1 & 6 & 10 & 2 & 5 & 8 & 4 & 9 & 7
\end{array}\right) \\
& \begin{array}{|l|l|l|l|}
\hline 6 & 10 & & \\
\hline 3 & 5 & 8 & \\
\hline 1 & 2 & 4 & 7 \\
\hline
\end{array} \\
& P
\end{aligned}
$$

The Robinson-Schensted correspondence between permutations and pairs of (standard) Young tableaux with the same shape

The Robinson-Schersted correspondence

$$
=
$$

$$
=
$$

$$
\longleftrightarrow
$$

better understanding
enumerative combinatorics
algebraic combinatorics bjective combinatorics

many
formulae, identities ...

many
formulae, identities ...
many
bijection correspondences..

many
formulae, identities ...
many
bijection
correspondences ..
basic bijection

$$
C_{n}=\frac{1}{(n+1)}\binom{2 n}{n}
$$

$n!$

many formulae, identities ...
many
bijection correspondences.. basic bijection
"bijective tools" or"basic Lemma"
«bijective tools»

Part I: course IMSc 2016
An introduction to enumerative, algebraic and bijective combinatorics
 paths

Part II: course IMSc 2017
Commutations and heaps of pieces unified framework

Part III: course IMSc 2018

The «cellular ansatz»

```
"The cellular ansatz"
```

RSK Robinson-Schensted-Knuth,
PASEP Partially Asymmetric Exclusion Process,
ASM Alternatíng Sign Matrices,
8-vertex model,
Tilings, ...
under the same roof
(i) first step
"The cellular ansatz."
quadratic
Q -tableaux
combinatorial objects
on a $2 D$ lattice
on a 2D lattice
"The cellular ansatz."
(i) first step
quadratic
algebra $Q \quad Q$-tableaux
combinatorial objects
on a 2D lattice

$$
U D=D U+I d
$$

an example

Heisenberg
operators
U, D
creation and annihilation opeators quantum mechanics
$U D=D U+I_{d}$
commutations

Lemma Every word w with letters U and D can be written in a unique way

$$
w=\sum_{i, j \geqslant 0} c_{i j}(w) D^{i} U^{j}
$$

$$
\begin{gathered}
U D=D U+I_{d} \\
U D \rightarrow D U \quad U D \rightarrow I_{d}
\end{gathered}
$$

commutations
rewriting rules

UUDD

$$
\begin{aligned}
U \cup D D & =U D U D+U D \\
& =D \cup U D+2 U D \\
& =(D \cup D U+D U)+2\left(D U+I_{d}\right) \\
& =(D D \cup U+2 D U)+2\left(D U+I_{d}\right) \\
& =D D U U+4 D U+2 I_{d}
\end{aligned}
$$

$$
U^{n} D^{n}=\sum_{0 \leqslant i \leqslant n} c_{n, i} D^{i} U^{i}
$$

$$
c_{n, 0}=n!
$$

permutations
why the name "cellular ansatz" ?

$$
\begin{array}{ll}
U D=D U+I_{d} & \text { commutations } \\
U D \rightarrow D U \quad U D \rightarrow I_{d} & \text { rewriting rules }
\end{array}
$$

planarization of the rewriting rules

$$
\left\{\begin{array} { l }
{ U D = D U + I _ { v } I _ { h } } \\
{ U I _ { v } = I _ { v } U } \\
{ I _ { h } D = D I _ { h } } \\
{ I _ { h } I _ { v } = I _ { v } I _ { h } }
\end{array} \quad \left\{\begin{array}{l}
U D \rightarrow D U \\
U I_{r} \rightarrow I_{v} U \\
I_{h} D \rightarrow D I_{r} \\
I_{h} I_{v} \rightarrow I_{v} I_{h}
\end{array}\right.\right.
$$

"planarization" of the "rewriting rules"

$\mathrm{UD}=\mathrm{qDU}+\mathrm{I}$

$$
\left\{\begin{array}{l}
U D=D U+I_{v} I_{n} \\
U I_{v}=I_{v} U \\
I_{h} D=D I_{n} \\
I_{n} I_{v}=I_{v} I_{h}
\end{array}\right.
$$

"complete"

$$
\begin{gathered}
U^{n} D^{n}=\sum_{o \lll n} c_{n, i} D^{i} U^{i} \\
c_{n, 0}=n!
\end{gathered}
$$

permutation as a Q-tablean

"complete" Q-tableau

another Q-tableau
Roth diagram of a permutation
"The cellular ansatz."
quadratic
algebra

$$
U D=D U+I d
$$

combinatorial objects
on a 2D lattice
permutations
towers placements
commutations
rewriting rules
planarization

Planar automata

 andQ-tableaux

"The cellular ansatz."

$$
\begin{aligned}
& \text { quadratic } \\
& \text { algebra }
\end{aligned} \begin{aligned}
& U D=D U+I d
\end{aligned}
$$

commutations
rewriting rules

$$
\begin{aligned}
& \text { combinatorial objects } \\
& \text { on a } 2 D \text { lattice }
\end{aligned}
$$

permutations
towers plocemenent automate"
initial state final
word w accepted by a
initial state final
planar
automaton

AS
alternating
sign
matrix
planar putomaton

planar putomaton

planar automaton

AS
alternating
sign matrix
planar rewriting

commutations

$$
\begin{aligned}
& \left\{\begin{array}{l}
B A=A B+A^{\prime} B^{\prime} \\
B^{\prime} A^{\prime}=A^{\prime} B^{\prime}+A B
\end{array}\right. \\
& \left\{\begin{array}{l}
B^{\prime} A=A B^{\prime} \\
B A^{\prime}=A^{\prime} B
\end{array}\right.
\end{aligned}
$$

The cellular Ansatz
quadratic algebra Q
(of a certain type)
(1) "planarization" on a grid of the rewriting rules Q-tableaux planar automata
(2) From a representation of the quadratic algebra Q with combinatorial operators, get a bijection

$$
\text { Q-tableaux } \longleftrightarrow(W) \quad \begin{gathered}
\text { Some combinatorial objects, } \\
\text { can be a pair }(P, Q)
\end{gathered}
$$

RSK (C hi)

The Robinson-Shensted-Knuth

 correspondence- Schensted's insertions
- geometric version with "shadow lines"
- Fomín "local rules" or "growth diagrams" - Schützenberger "jeu de taquín"
for Q : $\quad U D=D U+1$ representation of the quadratic algebra Q with combinatorial operators

Fomin's "local rules" "growth diagrams"

planar
rewriting

operators
U and D

Young lattice
$\begin{cases}U & \text { adding } \\ D & \text { deleting a cell in a Firers } \\ \text { diagram }\end{cases}$

U 田＝田＋ $\mathbb{H}+$ 田

"The cellular ansatz".
(ii) second step
quadratic
algebra
-tableaux
combinatorial objects on a 2D lattice.

$$
U D=D U+I d
$$

representation of
l_{y} combinat by combinatorial operators
bijection
RSK pairs of
young tableaux
commutations
rewriting rules
planarization "planar

Combinatorial physics
toy model in the phupies of dynamical systems far from equilibrium

computation of the "stationary probabilities"

The PASEP algebra

$$
D E=q E D+E+D
$$

The PASEP algebra $D E=q E D+E+D$

The PASEP algebra

$$
\begin{aligned}
& D E= q E D+E+D \\
& w(E, D)=\sum_{T} q^{k(T)} E^{i(T)} D^{j(T)} \\
& \text { word } \quad \text { unique } \\
& \text { tableau }
\end{aligned}
$$

analog of the normal ordering
alternative tableaux
alternative tableau

Definition

size of F

$$
\boldsymbol{n}=(\underset{\text { number }}{\text { rows }} \text { of })+\binom{\text { number of }}{\text { colum no }}
$$

alternative tableau

Definition
(i) some cells are coloured red or blue
(ii) no coloured cell at the left of a blue cell

- no coloured cell below a red cell

The PASEP algebra

$$
\begin{aligned}
& D E=q E D+E+D \\
& w(E, D)=\sum^{k(T)} \sum^{i(T)} D^{j(T)} \\
& \text { word } \quad \text { alternative } \\
& \text { tableaux }
\end{aligned}
$$

analog of the normal ordering
"The cellular ansatz."
quadratic
algebra

$$
U D=D U+I d
$$

Physics
$D E=q E D+E+D$
representation of by combinatorial operators
bijection
combinatorial objects on a 2D lattice.
permutations towers placements
alternative tableaux
commutations
rewriting rules
planarization "planar automats"
quadratic algebra Q defined by
generators and
relations
$D E=E D+E+D$

here Q-tableaux are alternative tableaux

Thaof: "Planarization" of the reurriting mules

$$
D E=q E D+E+D
$$

$$
w(E, D)=\sum_{T} q^{k(T)} E^{i(T)} D^{j(T)}
$$

word
tableau

"The cellular ansatz."
quadratic
algebra

$$
U D=D U+I d
$$

Physics
$D E=q E D+E+D$
representation of by combinatorial operators
bijection
combinatorial objects on a 2D lattice.
permutations towers placements
alternative tableaux
commutations
rewriting rules
planarization "planar automats"

What is the number
 of
 alternating tableaux?

$$
q \approx 0
$$

toy model in the phupiss of dynamical systems far from equilibrium

computation of the "stationary probabilities"

Definition Catalan alternative Tableau alternative tableau T without cells \square i.e. every empty all is below a red cell or on the left of a blue cell

$$
C_{n}=\frac{1}{(n+1)}\binom{2 n}{n}
$$

Catalan numbers

	$C_{n}=\frac{1}{(n+1)}\binom{2 n}{n}$
$\begin{array}{l}\text { Catalan } \\ \text { alternative } \\ \text { tableaux }\end{array}$	$\begin{array}{l}\text { Catalan } \\ \text { numbers }\end{array}$
O	0

Prop. The number of alternative tableaux of size n is $(n+1)!$

Part I: course IMSc 2016

The Catalan and n! gardens

The "exchange-fusion" algorition

EXP
alternative
tableaux \longrightarrow permutations

for the PASEP algebra

$$
D E \approx q E D+E+D
$$

representation with operators related to the combinatorial theory of orthogonal polynomials
«Laguerre histories» q-Laguerre polynomials

Data structures in
Computer science: dictionaries
"The cellular ansatz."
quadratic
algebra

$$
U D=D U+I d
$$

Phypise
$D E=q E D+E+D$
commutations

Q -tableaux
combinatorial objects on a 2D lattice.
permutations towers plocemenent
alternative tableaux
bijections
 $\xrightarrow{E \times F}$
"Laguerre histories" permutations "histories"
rewriting rules
planarization
"The cellular ansate."

Aztec tiling

-tableaux

ASM
alterating
sign matirix
commutations

$$
\begin{aligned}
& \left\{\begin{array}{l}
B A=A B+A^{\prime} B^{\prime} \\
B^{\prime} A^{\prime}=A^{\prime} B^{\prime}+A B
\end{array}\right. \\
& \left\{\begin{array}{l}
B^{\prime} A=A B^{\prime} \\
B A^{\prime}=A^{\prime} B
\end{array}\right.
\end{aligned}
$$

Def-ASM alternating sign matrix

$$
\left[\begin{array}{rrrrr}
0 & 1 & 0 & 0 & 0 \\
1 & -1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

(i) entries: $0,1,-1$
(ii) sum of entries in each (row $\begin{aligned} & \text { row n } \\ & \text { column }\end{aligned}=1$

ASH
(iii) non-zero euthis alternate in each $\left\{\begin{array}{l}\text { row } \\ \text { column }\end{array}\right.$
alterating
sign matrix

Permutation σ

$$
\begin{aligned}
& \sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 3 & 5 & 4 \\
4
\end{array}\right) \\
&\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 \\
0 & 0 & 0 \\
0 & 0
\end{array}\right) \\
&\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right)+\underset{\text { permutation }}{6} \\
& 1,2,7,42,429, \ldots .
\end{aligned}
$$

$$
\begin{aligned}
& 1,2,7,42,429, \ldots \\
& \frac{1!4!}{n!(n+1!}
\end{aligned} \frac{(3 n-2)!}{(n+n-1)!}
$$

"The cellular ansatz."

"The cellular ansatz."
(iii) third step
quadratic
algebra
Q -tableaux

$$
\underset{\text { tableaux }}{\underset{\text { alternative }}{\text { alt }} \longleftrightarrow \operatorname{Adela}(T)=(P, Q) ? ~}
$$

8-verrex model
alternating sign matrix

Thank you !

www.viennot.org

