An introduction to

enumerative algebraic

combinatorics

 bijectiveIMSc
January-March 2016

Xavier Viennot CNRS, LaBRI, Bordeaux www.xavierviennot.org

Chapter 4

The n ! garden (4)

IMSc
25 February 2016
"local" algorithm on a grid or "growth diagrams"
S. Fomin, 1986, 1994
M. van Leeuwen, 1996

Operator U_{i}

$$
U_{i}(\alpha)=\alpha+(i)
$$

$$
\begin{aligned}
& \beta=\gamma \\
& \alpha \neq \beta
\end{aligned}
$$

$$
\alpha=\beta=\gamma
$$

$$
\beta \quad \delta
$$

$$
\delta=\alpha+(I)
$$

$$
\begin{aligned}
& \beta=\gamma=\alpha+(i) \\
& \delta=\beta+(i+1)
\end{aligned}
$$

$$
\delta=\alpha=\beta=\gamma
$$

initial state during the labeling process

final state

- in the labeling process of the vertices of the grid with Ferrers diagrams : independance of the order in which the labeling is done

- in the grid, for cell, δ is obtained from β by adding a cell, or is equal to β - in the grid, for cell, δ is obtained from γ by adding a cell, or is equal to γ

$$
\beta=\gamma
$$

$$
\begin{aligned}
& \begin{array}{l}
\beta=\gamma \\
\alpha \neq \beta
\end{array} \\
& \beta=\gamma=\alpha+(i) \\
& \delta=\beta+(i+1) \\
& \beta=\alpha \\
& \delta=\gamma=\alpha+(j) \\
& \gamma=\alpha \\
& \delta=\beta=\alpha+(i)
\end{aligned}
$$

- in the labeling process of the vertices of the grid with Ferrers diagrams :
independance of the order in which the labeling is done

- in the grid, for cell, δ is obtained from β by adding a cell, or is equal to β - in the grid, for cell, δ is obtained from γ by adding a cell, or is equal to γ
- in the last rows and last columns:
we get maximal chains of Ferrers diagrams
poset \preceq partially ordered set

covering

$$
\alpha \leqslant \beta
$$

no γ between α and β

Hasse diagram

Young lattice

lattice
every two elements have a unique least upper bound (join)
and a unique greatest lower bound (meet)

Young lattice

Young lattice

- in the labeling process of the vertices of the grid with Ferrers diagrams :
independance of the order in which the labeling is done

- in the grid, for cell, δ is obtained from β by adding a cell, or is equal to β - in the grid, for cell, δ is obtained from γ by adding a cell, or is equal to γ
- in the last rows and last columns:
we get maximal chains of Ferrers diagrams

- in the labeling process of the vertices of the grid with Ferrers diagrams : independance of the order in which the labeling is done

- in the grid, for cell, δ is obtained from β by adding a cell, or is equal to β - in the grid, for cell, δ is obtained from γ by adding a cell, or is equal to γ
- in the last rows and last columns: we get maximal chains of Ferrers diagrams
- these maximal chains encode a pair (P, Q) of Young tableaux of the same shape
final state
the pair (P,Q)

- in the labeling process of the vertices of the grid with Ferrers diagrams : independance of the order in which the labeling is done

- in the grid, for cell, δ is obtained from β by adding a cell, or is equal to β - in the grid, for cell, δ is obtained from γ by adding a cell, or is equal to γ
- in the last rows and last columns: we get maximal chains of Ferrers diagrams
- these maximal chains encode a pair (P, Q) of Young tableaux of the same shape
- the process can be reversed, from the pair (P, Q), get back the permutation
permutation

the pair (P, Q)

- in the labeling process of the vertices of the grid with Ferrers diagrams : independance of the order in which the labeling is done

- in the grid, for cell, δ is obtained from β by adding a cell, or is equal to β - in the grid, for cell, δ is obtained from γ by adding a cell, or is equal to γ
- in the last rows and last columns: we get maximal chains of Ferrers diagrams
- these maximal chains encode a pair (P, Q) of Young tableaux of the same shape
- the process can be reversed, from the pair (P, Q), get back the permutation
- this bijection is the same as the Robinson-Schensted correspondance

dessin fait por S. FOMIN

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

permutetion

proof of the equivalence local RSK and geometric RSK

$\beta=\alpha$
$\delta=\gamma=\alpha+(j)$
$i=j$
i+

$$
\begin{aligned}
& \beta=\gamma=\alpha+(i) \\
& \delta=\alpha+(i)+(i+1)
\end{aligned}
$$

$$
\begin{aligned}
& \gamma=\alpha \\
& \delta=\beta=\alpha+(i)
\end{aligned}
$$

$\beta=\gamma=\alpha$
$\delta=\alpha+(1)$

$\delta=\beta=\gamma=\alpha$

$$
\begin{aligned}
& \beta=\gamma=\alpha+(i) \\
& \delta=\alpha+(i)+(i+l)
\end{aligned}
$$

$\beta=\gamma=\alpha$

$$
\delta=\alpha+(I)
$$

$\beta=\alpha$
$\delta=\gamma=\alpha+(j)$

$$
\begin{aligned}
& \gamma=\alpha \\
& \delta=\beta=\alpha+(i)
\end{aligned}
$$

$\beta=\gamma=\alpha+(i)$
$\delta=\beta+(i+1)$

$$
\alpha=\beta=\gamma
$$

$$
\beta \quad \delta
$$

42153

$\xrightarrow{1} \underbrace{2} \boldsymbol{Z}^{3} \boldsymbol{H}^{2}$

$$
\mathrm{w}=12312
$$

Yamanuchi word

complement:

combinatorial representation of the algebra

$$
D U=U D+I d
$$

Sergey Fomin (with C. K.)

Operators U and D

adding or deleting a cell in a Ferrers diagram

Young lattice

田 $\mathrm{D}=$ 皿 + 。

$$
\mathrm{UD}=\mathrm{DU}+\mathrm{I}
$$

"The cellular Ansatz"

quadratic algebra Q
commutations
rewriting rules
planarization
combinatorial objects
on a 2d lattice
bijections
permutations $\stackrel{\text { RSK }}{\longleftrightarrow}$ pairs of Tableaux Young
representation
by operators
"normal ordering"
$\mathrm{UD}=\underset{\text { Weyl-Heisenberg }}{\mathrm{DU}}+\mathrm{Id}$

Physics

oscillating tableaux

sequences of
oscillating tableaux starling and ending at \varnothing
involutions on $2 n$ with no fixed points (or chord diagramo)

Rook placements no empry row no empty column

Hermite histonies

2-colored
oscillating

involutions on 2 n with 2-colored fixed points

Rook placements

sequences of $2 n$
2-colored oscillating tableaux starting and ending at \varnothing

exercise Find a bijection between Rook placements in a staircase shape and partitions (of sets)
shape with n rows and columns \uparrow partition on $(n+1)$ elements with ($n+1-k$) blocks

$$
\phi q \mathbb{1}-\mathbf{1}-\mathbf{1}-\mathbf{1}
$$

vacillating tableaux.
hesitating tableaux
exercise Read (part of) the paper W.Chen, E.Deng, R. Du, R. Stanley, C. Man arXiv:math.CO/0501230. Trans.A.M.S. (2005)
and reprove the foot that rook placements in a staircase shape are in beytection with sequences of vacillating (resp. hesitating.) tableaux [and this with set partitions]
stammering tableaux
Josuat-Verges

$$
\text { ar Xiv: } 1601,02212
$$

$$
[\text { math } . c o j
$$

RS à RSK

extension to matrices

D. Knuth, 1970

$$
M=\begin{array}{cccccc}
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & 2 & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & 1 & \cdot \\
1 & \cdot & 1 & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & 1 & \cdot \\
\cdot & \cdot & 1 & \cdot & 2 & \cdot \\
\cdot
\end{array}
$$

two-line array (or generalised permutation)

$$
\binom{u}{v}=\left(\begin{array}{l|ll|lllll|l|llll|l}
1 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 4 & 4 & 5 & 5 & 5 & 5 \\
3 & 6 & 6 & 1 & 2 & 3 & 4 & 6 & 3 & 5 & 1 & 1 & 2 & 4
\end{array}\right)
$$

Lauren Kelly Williams
App for iPad
available on the Appstore
some references about RSK

First papers, Classic

G. de B. Robinson

On the representations of the symmetric group, Amer. J. Math. 60 (1938), 745-760
C. Schensted

Longest increasing and decreasing subsequences, Cand. J. Math. 13 (1961), 179-191
M.P.Scützenberger

- Quelques remarques sur une construction de Schensted, Math. Scand., 12 (1963) 117-128.
D.E.Knuth

Permutations, matrices and generalized Young tableaux, Pacific J. Math. 34 (1970) 709-727
in "The art of computer programming", ch 1, vol 3, Sorting and Searching, Addison-Wesley, Reading, 1973.
C. Greene

An extension of Schensted's theorem, Adv. in Math. 14 (1974) 254-265
Xavier G. Viennot

- Une forme géométrique de la correspondance de Robinson-Schensted, in "Combinatoire et Représentation du groupe symétrique" (D. Foata ed.) Lecture Notes in Mathematics n ${ }^{\circ}$ 579, pp 29-68, 1976

Jeu de taquin

M.P.Scützenberger

- La correspondance de Robinson-Schensted, in "Combinatoire et Représentation du groupe symétrique" (D. Foata ed.) Lecture Notes in Mathematics n ${ }^{\circ}$ 579, Springer-Verlag, 1977, p 59-135,
A. Lascoux and M.P.Scützenberger

Le monoïde plaxique, in "Non-commutative structures in algebra and geometric", A. de Lucas ed., Quaderni de la Ricerca Scientifica ${ }^{\circ} 109$, 1981, p.129-156

Local rules and Growth diagrams

Sergey Fomin

- Finite partially ordered sets and Young tableaux, Sov. Math. Dokl., 19 (1978) 1510-1514.
- Schur operators and Knuth correspondences, Journal of Combinatorial Theory, Ser.A 72 (1995), 277-292.
- Duality of graded graphs, Journal of Algebraic Combinatorics 3 (1994), 357-404.
- Schensted algorithms for dual graded graphs, Journal of Algebraic Combinatorics 4 (1995), 5-45.
- Dual graphs and Schensted correspondences, Series formelles et combinatoire algébrique,
P.Leroux and C.Reutenauer, Ed., Montreal, LACIM, UQAM, 1992, 221-236.
- Finite posets and Ferrers shapes (with T.Britz, 41 pages) Advances in Mathematics 158 (2000), 86-127.

A survey on the Greene-Kleitman correspondence; many proofs are new.
Richard P. Stanley

- Differential posets, J. Amer. Math. Soc. 1 (1988), 919-961.
- Variations on differential posets, in Invariant Theory and Tableaux (D. Stanton, ed.), The IMA Volumes in Mathematics and Its Applications, vol. 19, Springer-Verlag, New York, 1990, pp. 145-165.
Marc van Leeuwen
- The Robinson-Schensted and Schützenberger algorithms, an elementary approach
(a 272 Kb dvi file) Electronic Journal of Combinatorics, Foata Festschrift, Vol 3(no.2), R15 (1996)
Christian Krattenthaler Growth diagrams, and increasing an decreasing chains in fillings of Ferrers shapes, Adv.Appl. Maths 37 (2006) 404-431.

Books

B. Sagan The Symmetric Group - Representations, Combinatorial Algorithms, and symmetric functions - 2nd edition, Springer- Verlag, 2000
W. Fulton Young tableaux, London Mathematical Society Students Texts 35, Cambridge University Press, 199

Sergey Fomin Knuth equivalence, jeu de taquin and the Littlewood-Robinson rule (30 pages)
Appendix 1 to Chapter 7 in: R.P.Stanley, Enumerative Combinatorics, vol.2, Cambridge University Press, 1999. Amritanshu Prasad, Representaion Theory, A combinatorial Viewpoint, Cambridge University Press, 2015

Softwares

Guoniu Han

Autour de la correspondance de Robinson-Schensted http://math.u-strasbg.fr/~guoniu/software/rsk/index.html Exposé au SLC 52 et LascouxFest, 29/03/2004
on the Apple store: RSK (by L. Williams)

