An introduction to

enumerative algebraic bijective

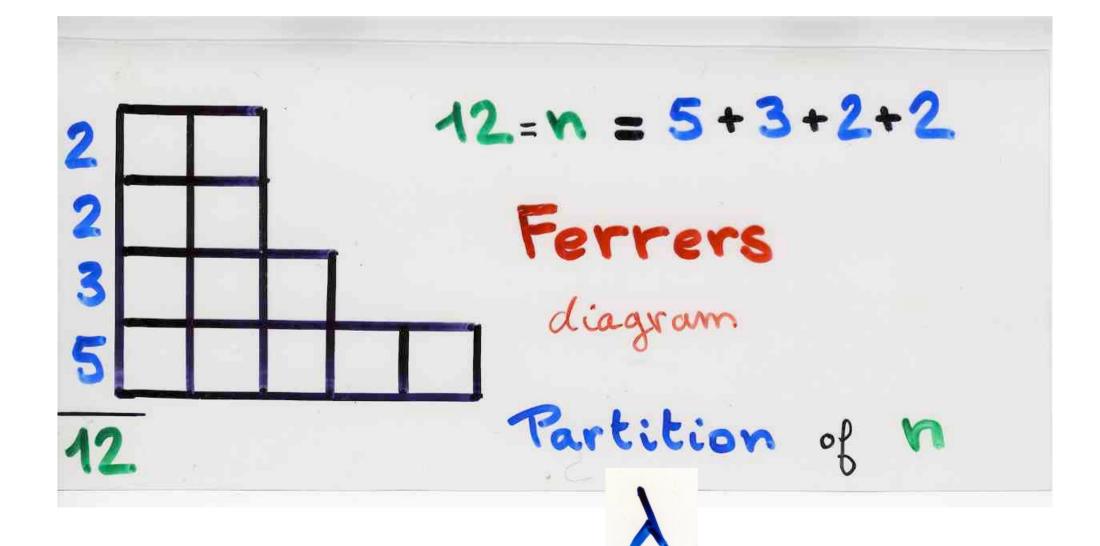
combinatorics

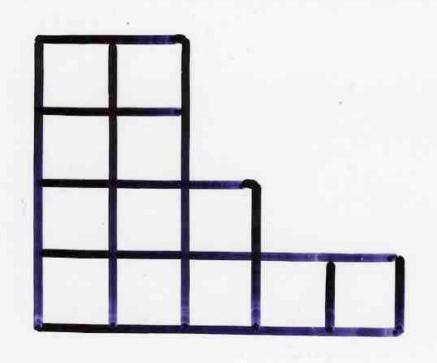
IMSc January-March 2016 Xavier Viennot
CNRS, LaBRI, Bordeaux
www.xavierviennot.org

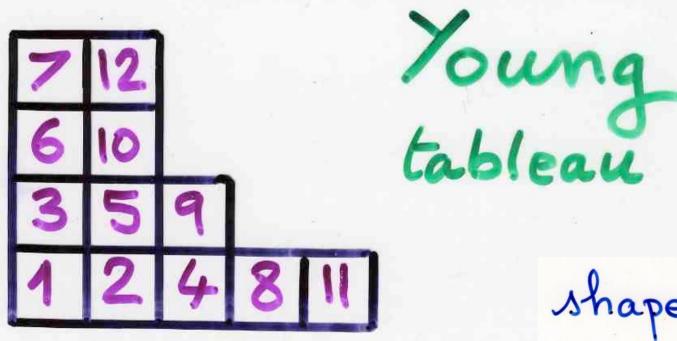
Chapter 4

The n! garden (3)

IMSc 23 February 2016 Young tableaux





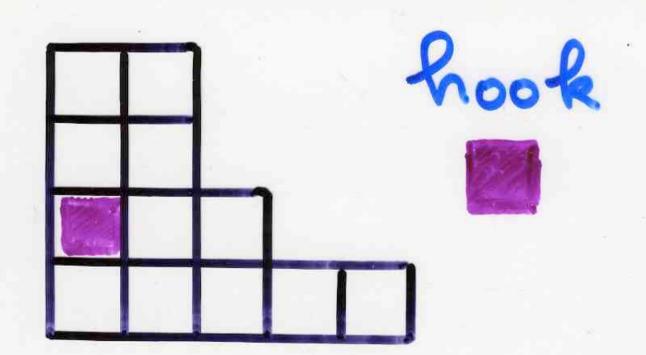


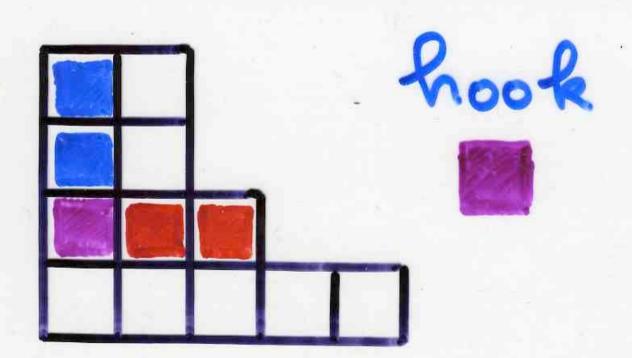
shape 1

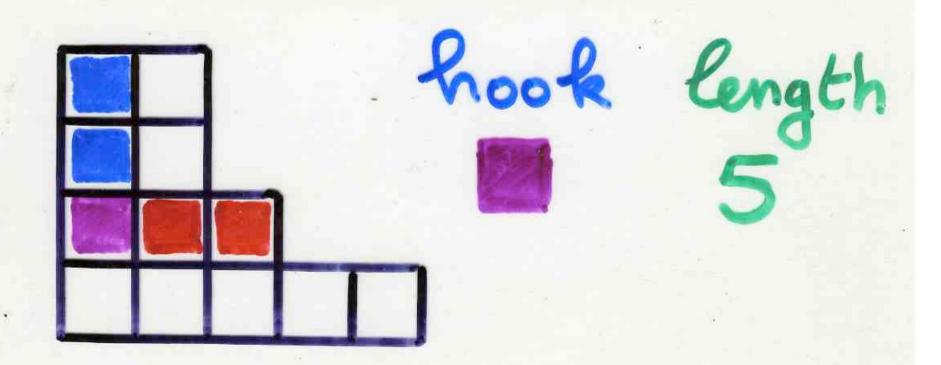
Lableaux
shape

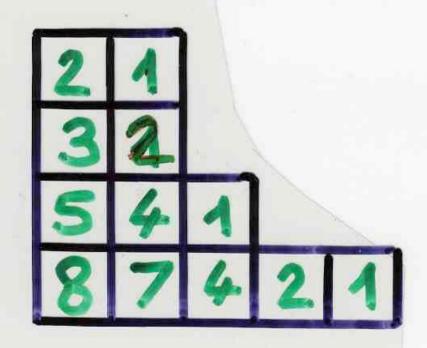
Hook length formula

J.S. Frame, G. de B. Robinson et R.M. Thrall, 1954

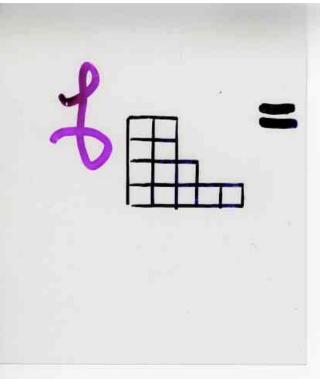


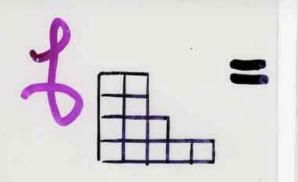




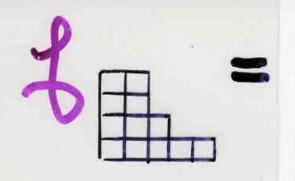


look, length formula





 $1.2 \times 3.4.5.6.7.8.9.10.11.12$ $1\frac{3}{2} \times 2\frac{3}{2} \times 3 \times 4^{2}.5.7.8$



1.2×3.4.5.6.7.8.9.10.11.12 13×23×3×42.5.7.8

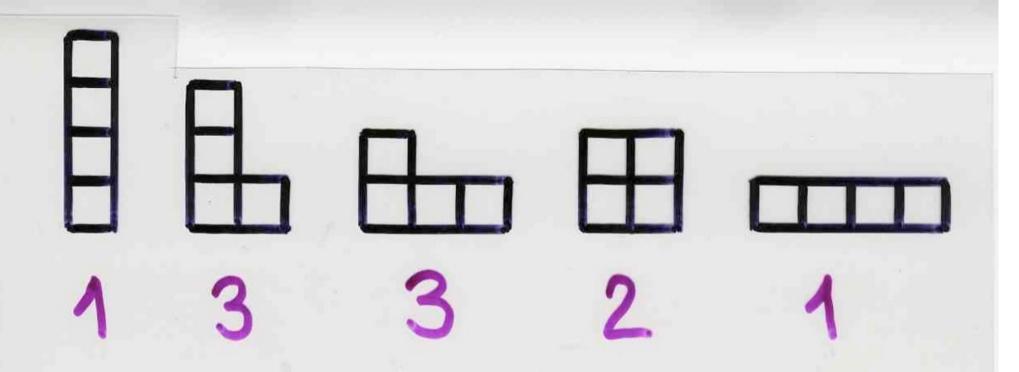
$$= 3^{4} \times 5 \times 11 = 4455$$

An introduction to RSK

G. de B. Robinson, 1938

C. Schensted, 1961

D. Knuth, 1970



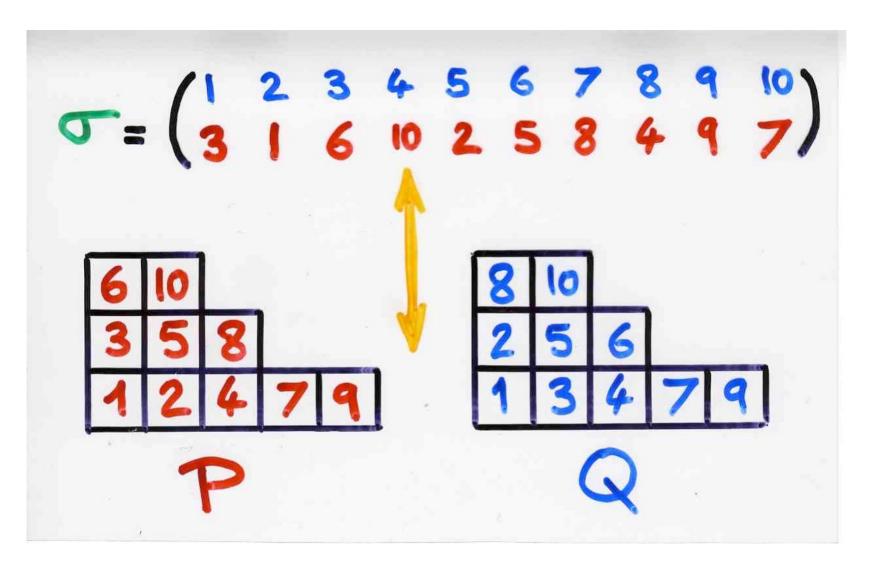
=

$$\mathcal{T} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 1 & 6 & 10 & 2 & 5 & 8 & 4 & 9 & 7 \end{pmatrix}$$

number of
$$= 1 \times 2 \times 3 \times ... \times n$$

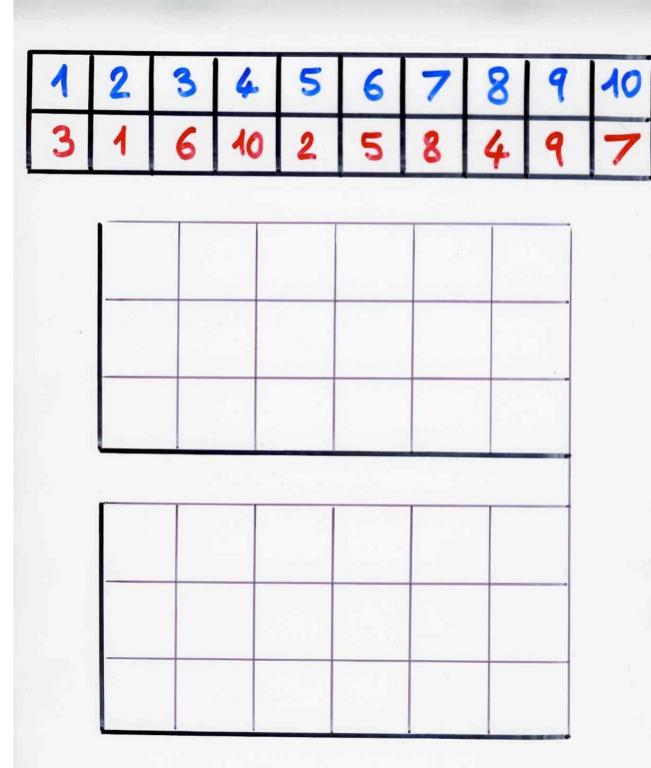
on $21,2,...,n$? $= n!$

$$n! = \sum_{\text{partitions}} (4)^2$$

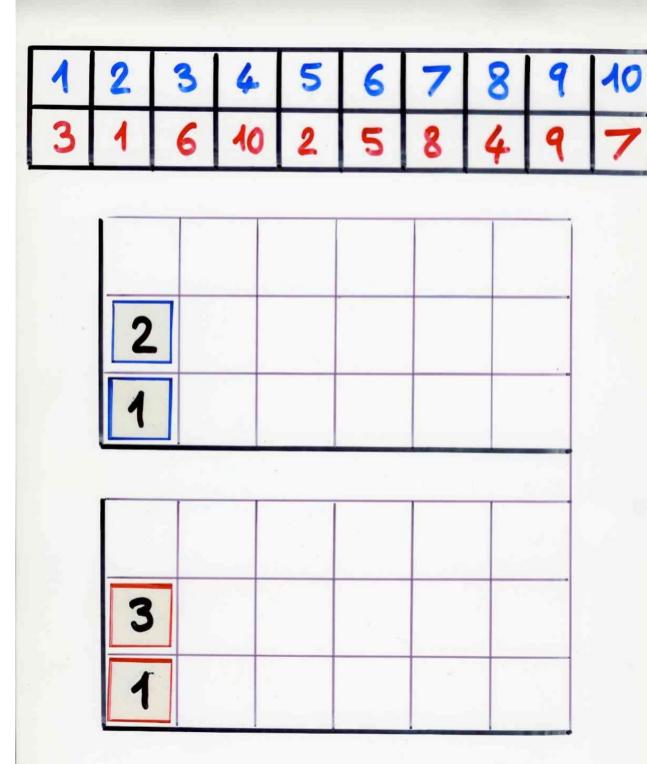


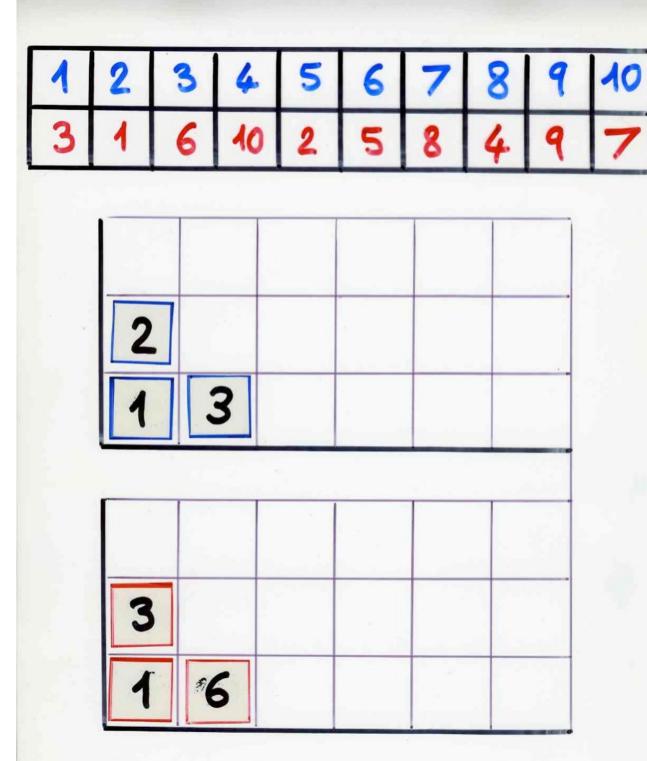
The Robinson-Schensted correspondence between permutations and pairs of (standard) Young tableaux with the same shape

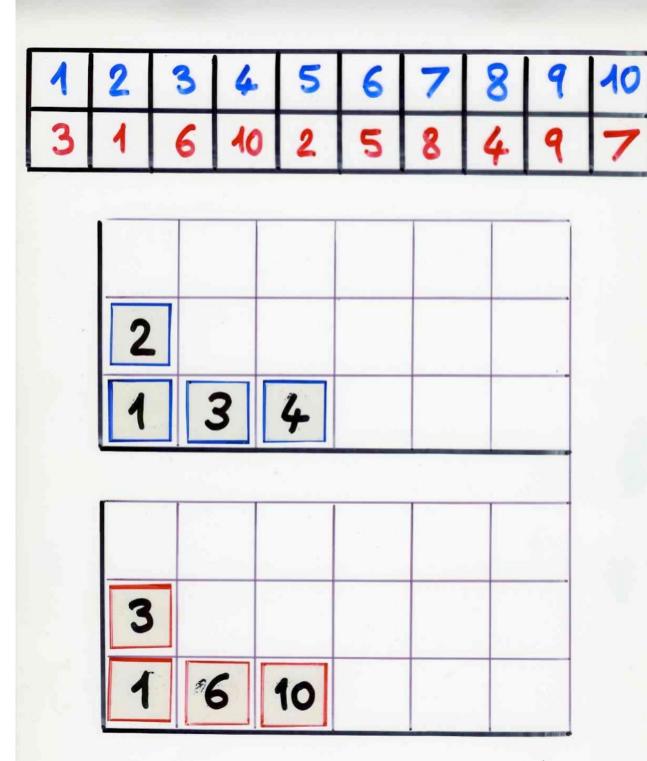
RSK with Schensted's insertions

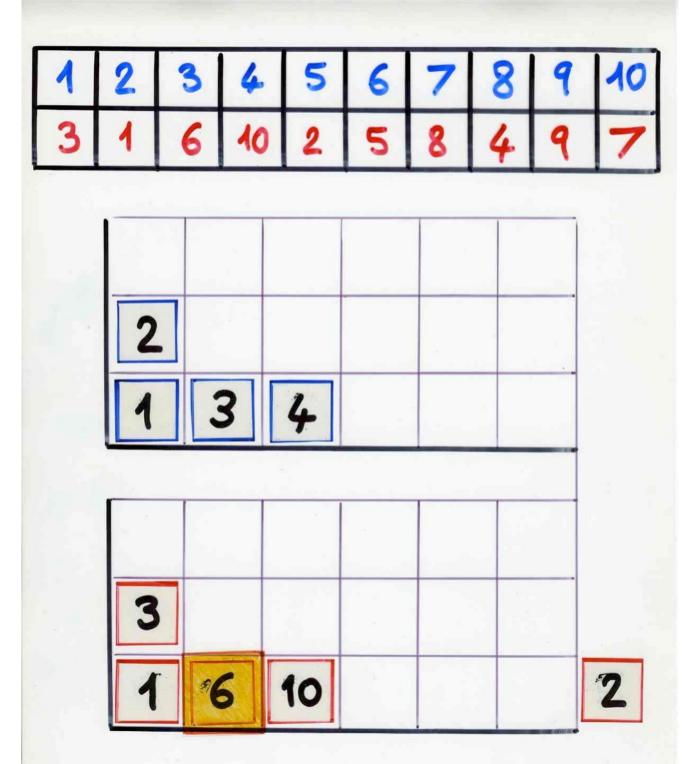


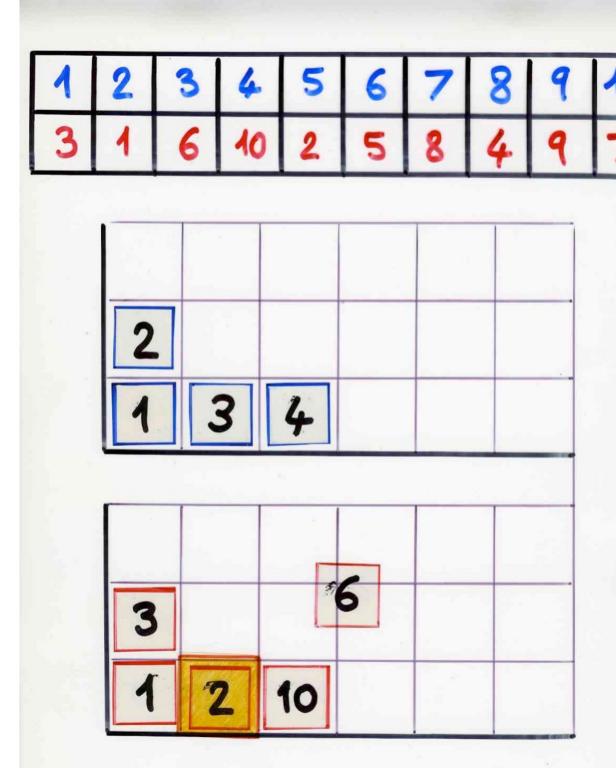
1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7
								•	
							4		
	1								
				2					
	3								
	3								

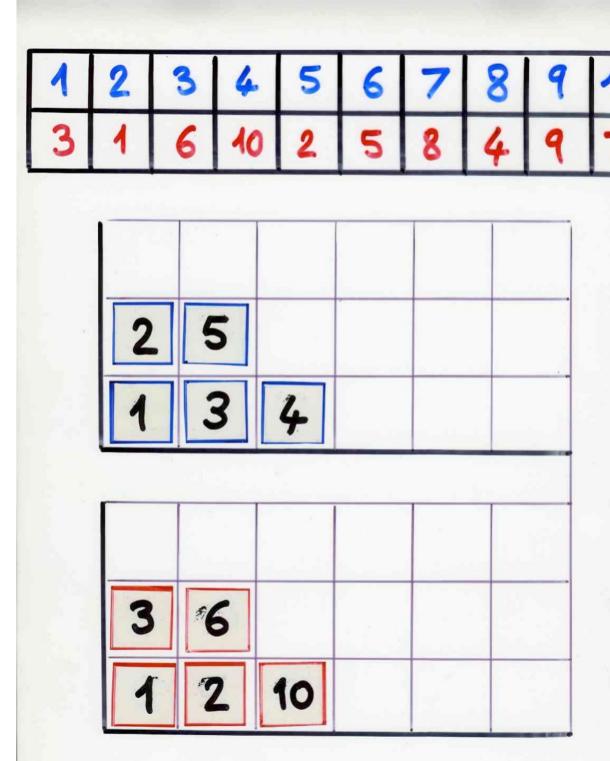


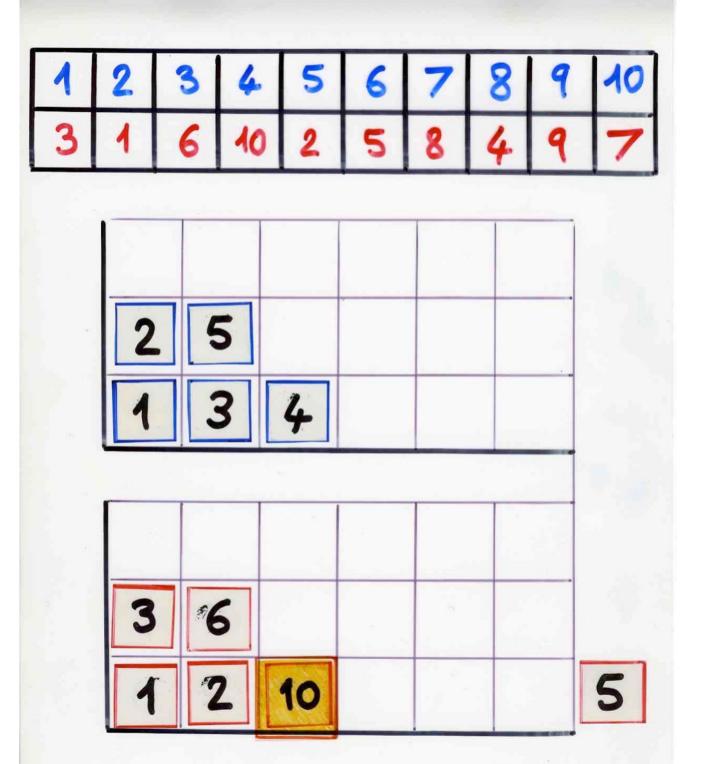


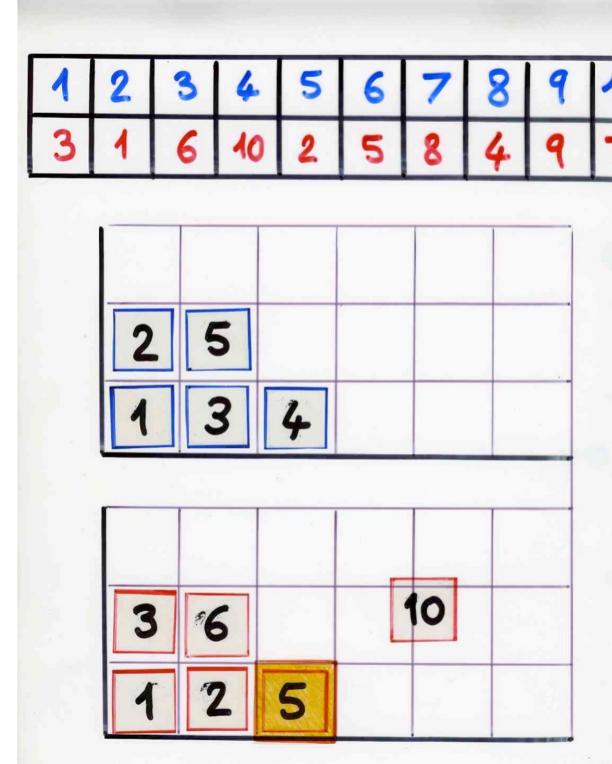


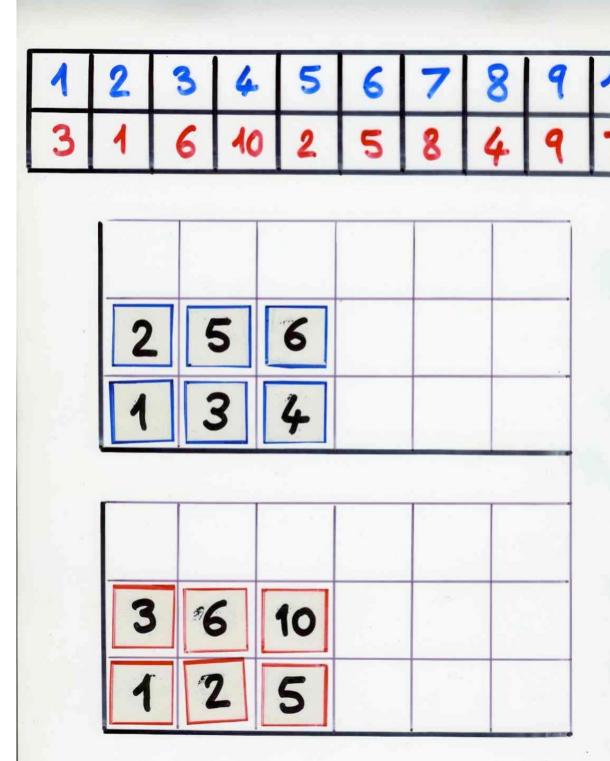


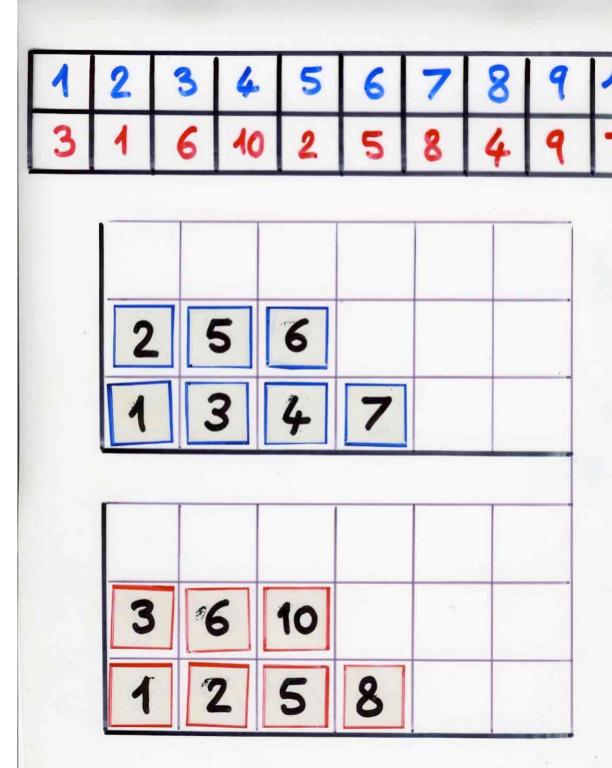


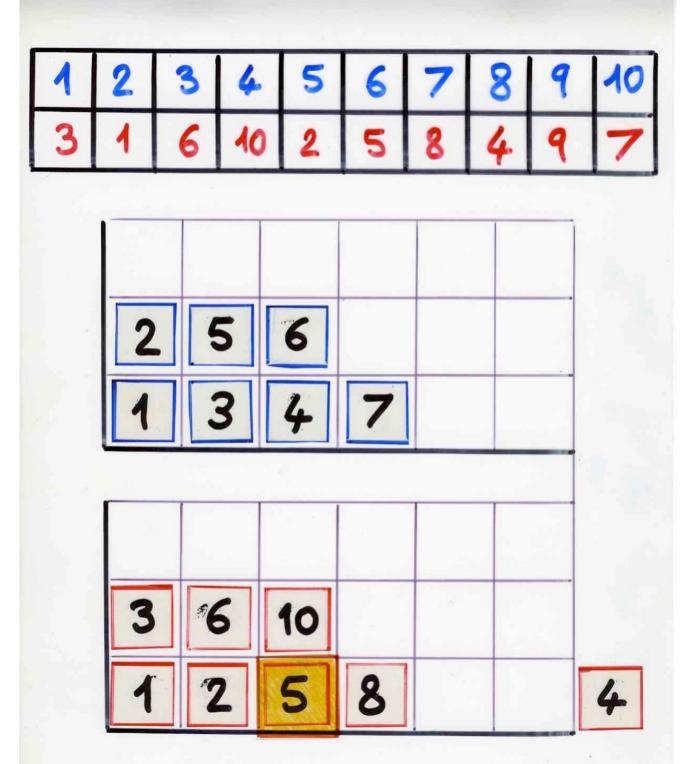


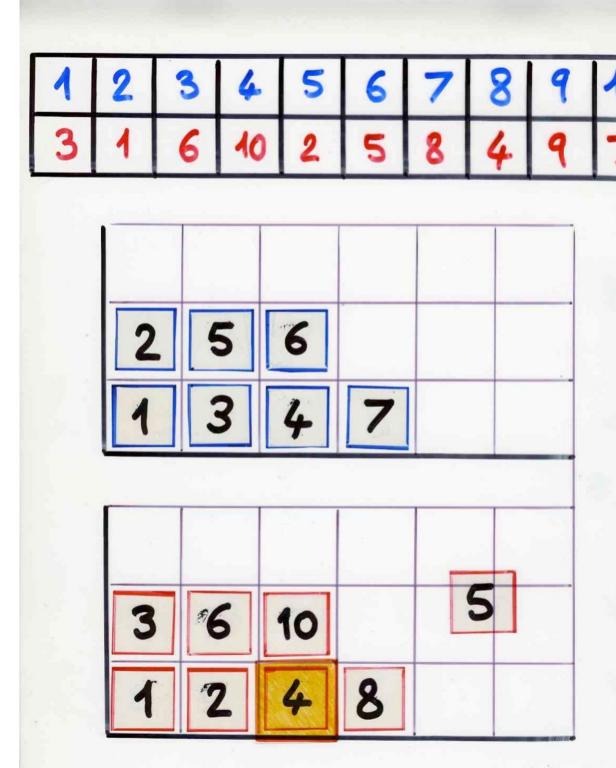


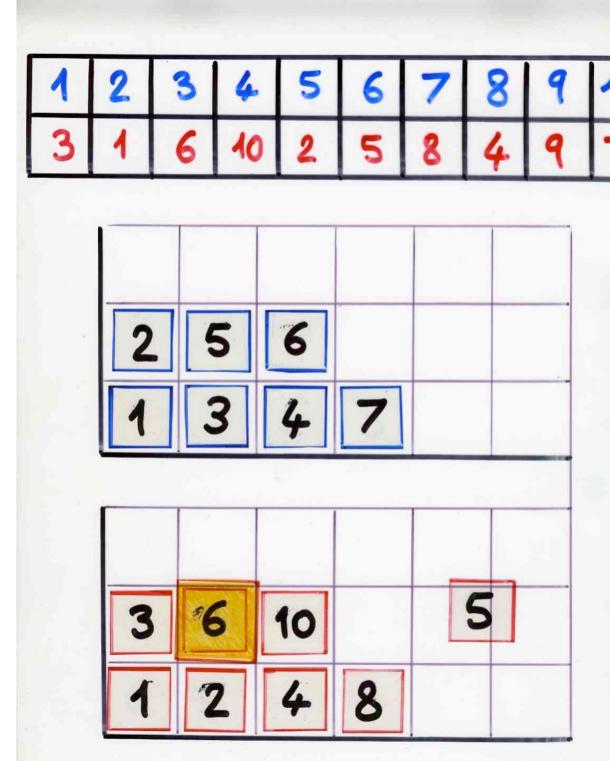


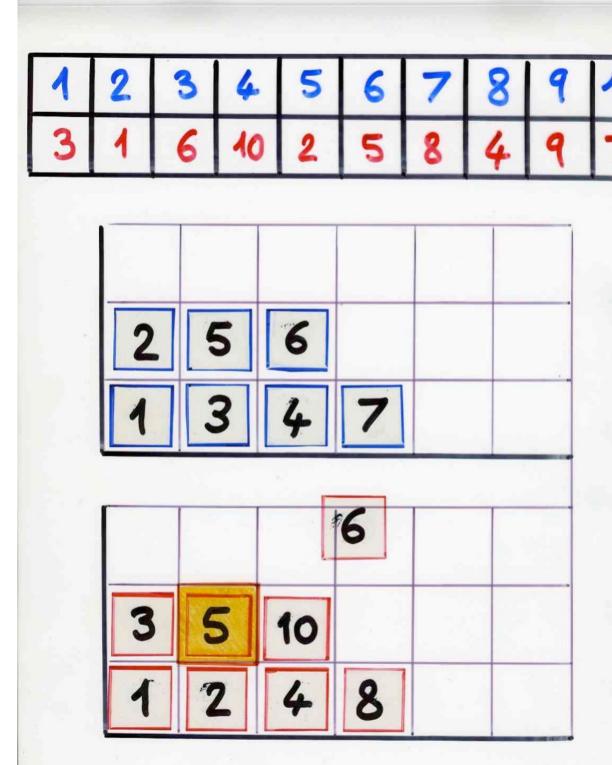


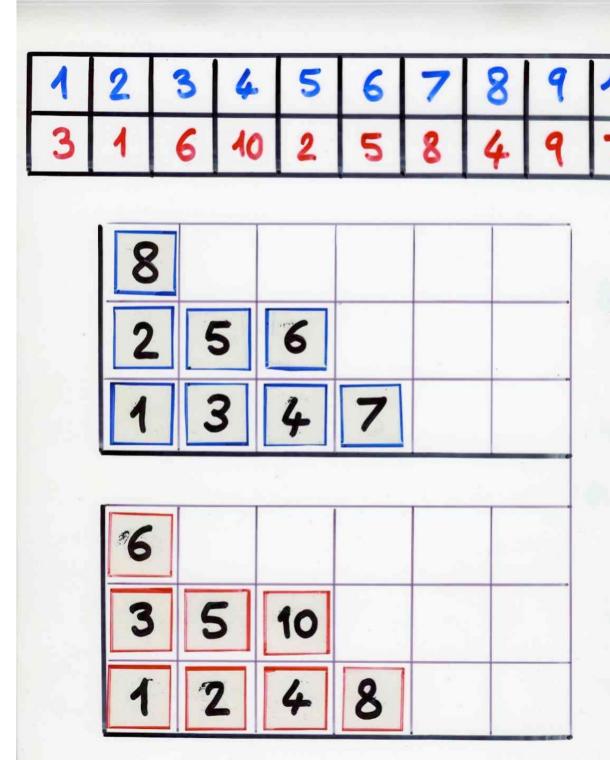


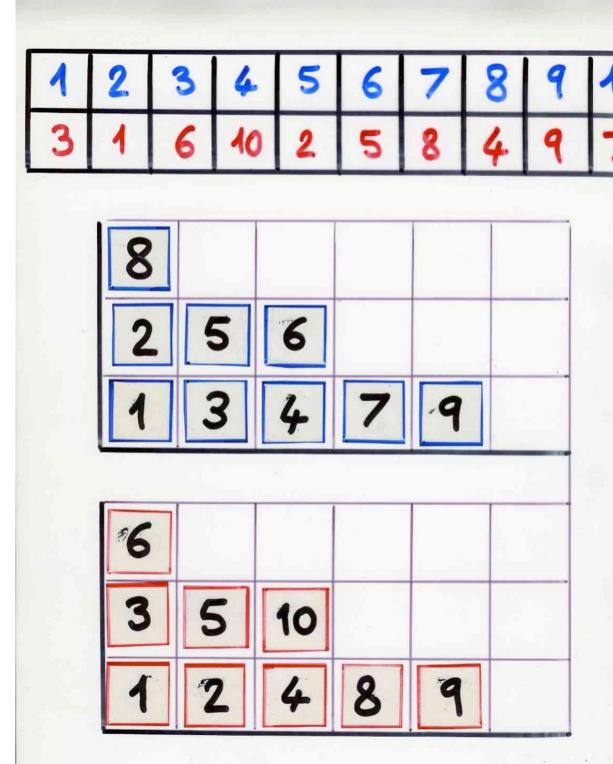


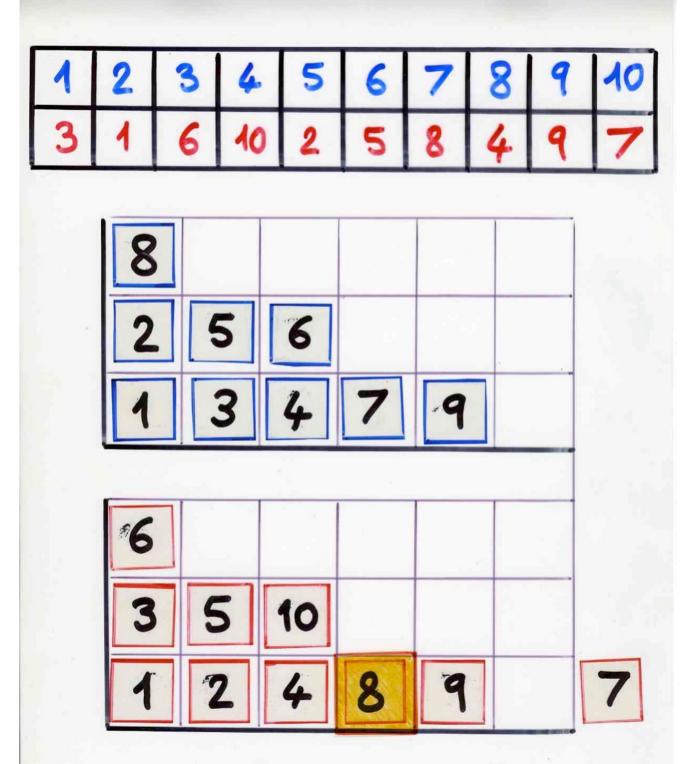


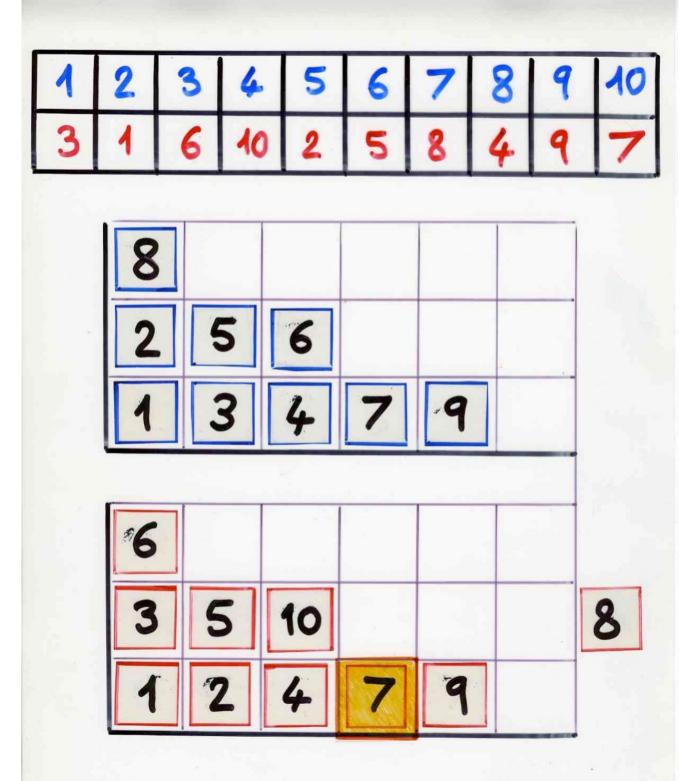


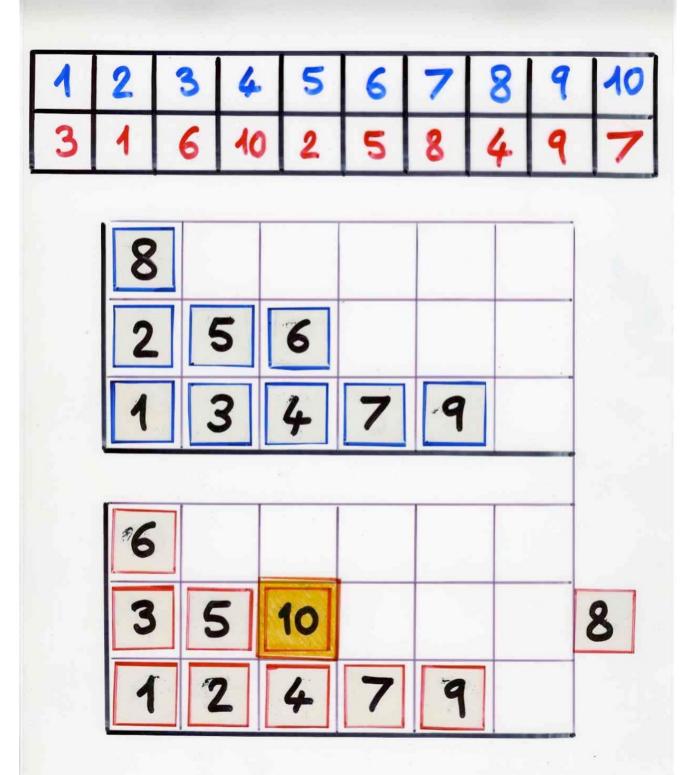


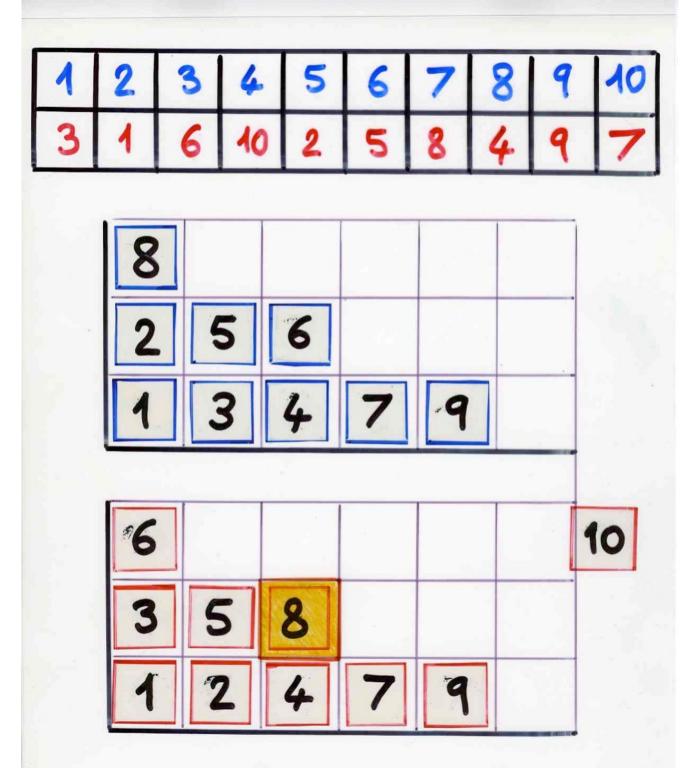


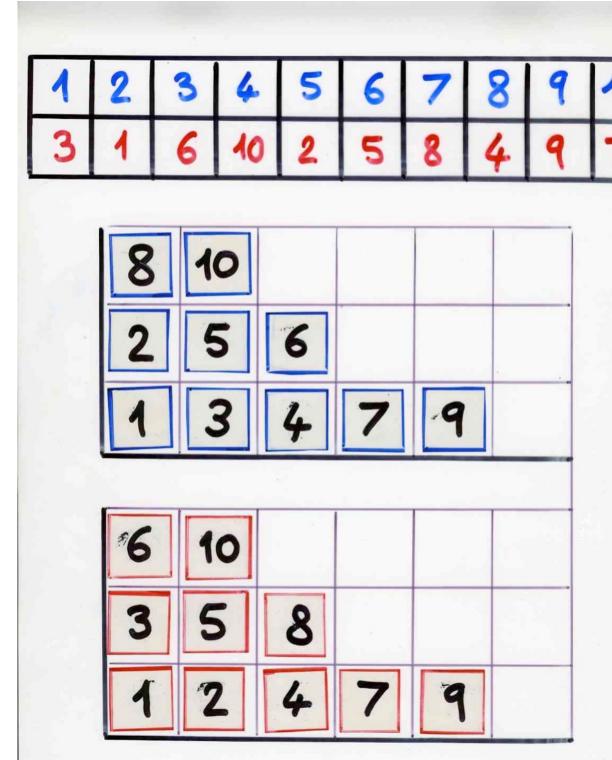






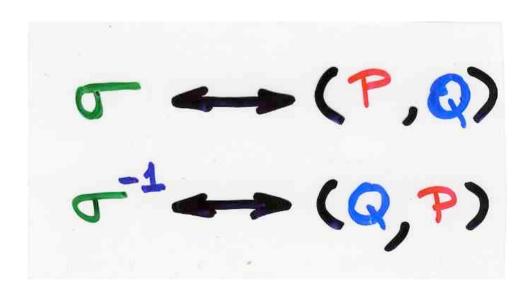


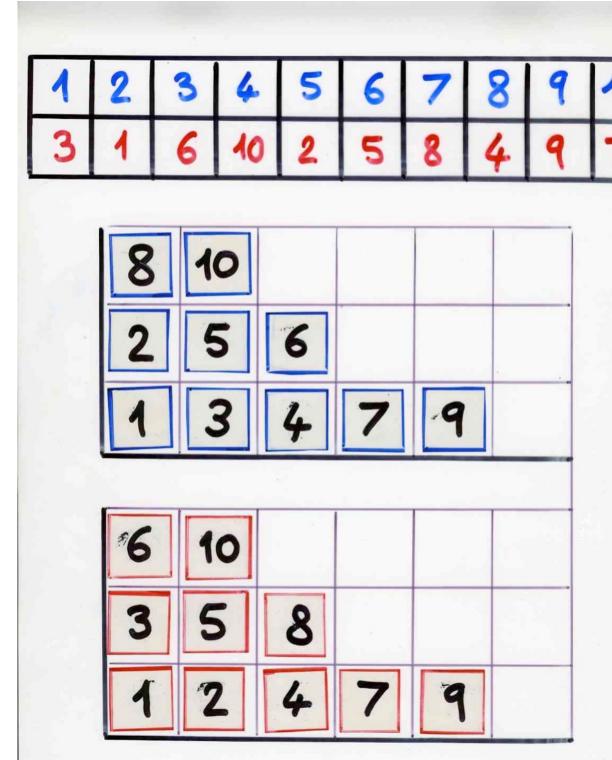




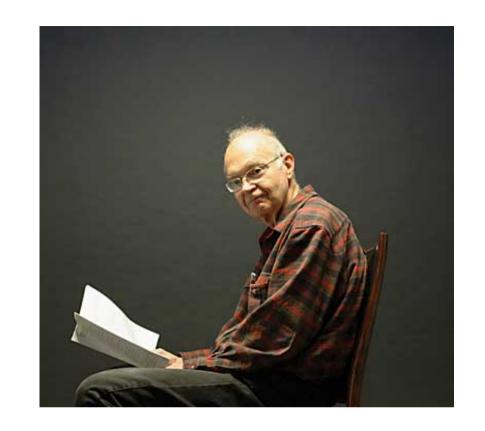
(P,Q) (Q,P)

The group of permutations





Vol 3, "The art of computer programming"

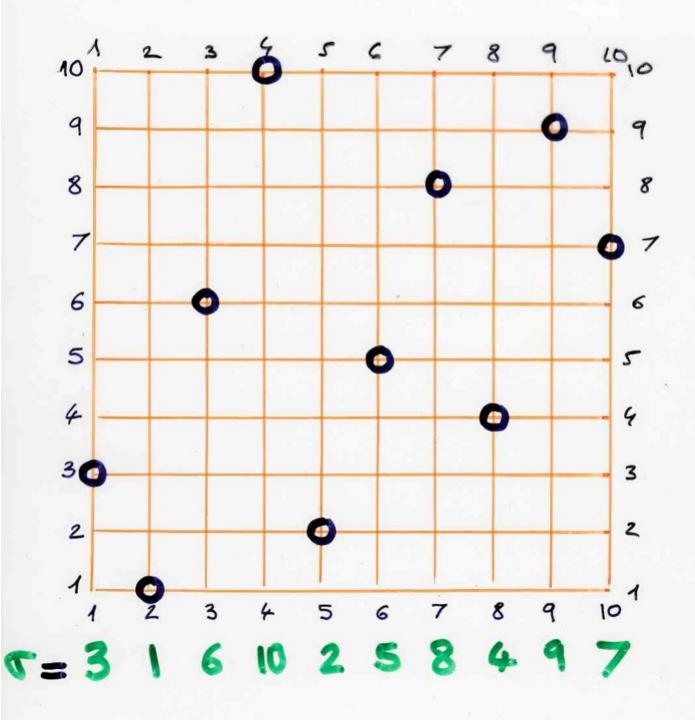


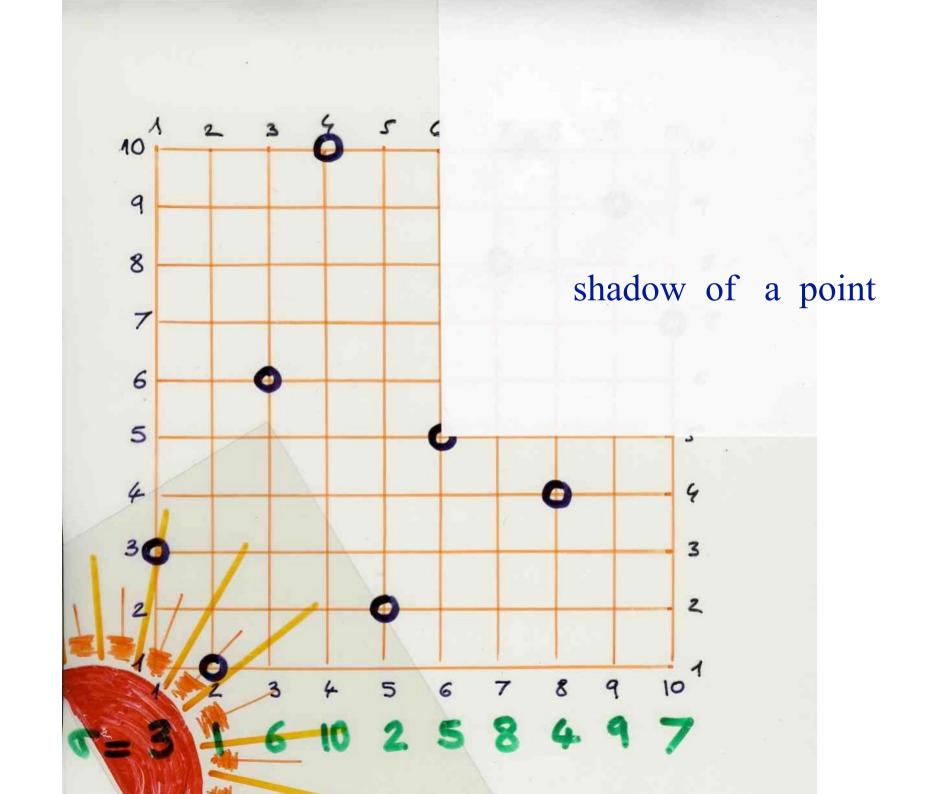
Donald Knuth (1972)

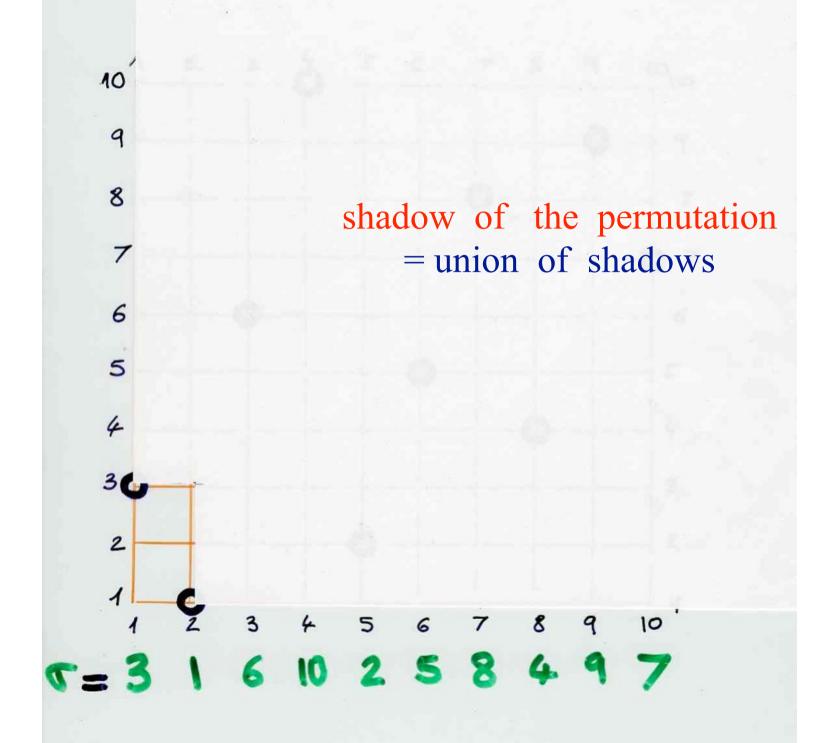
"The unusual nature of these coincidences might lead us to suspect that some sort of with craft is sperating behind the scenes"

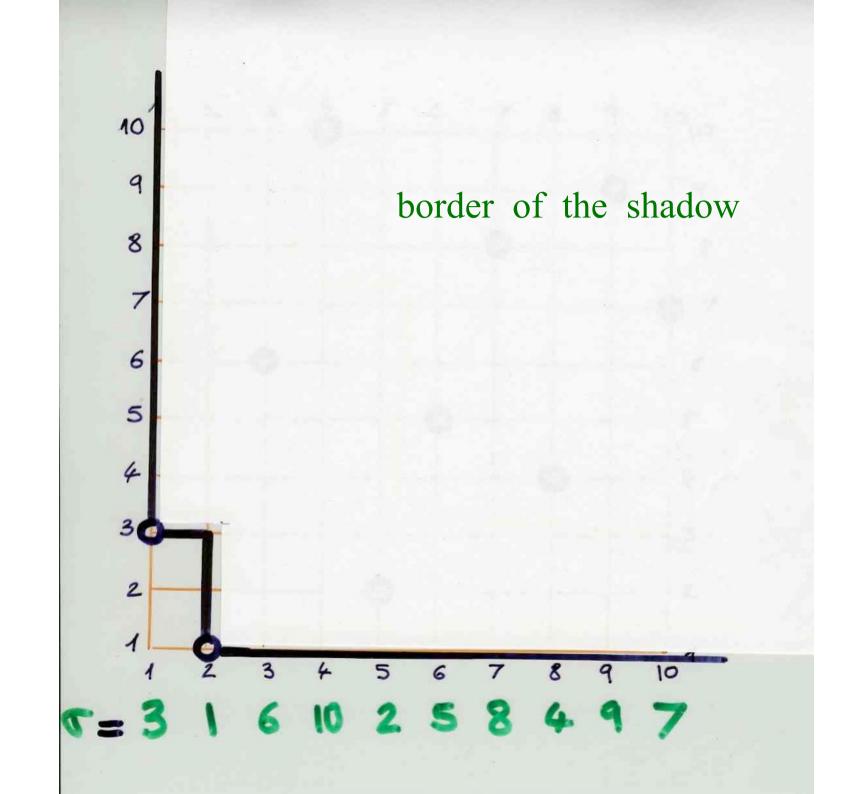
A geometric version of RSK with "light" and "shadow lines"

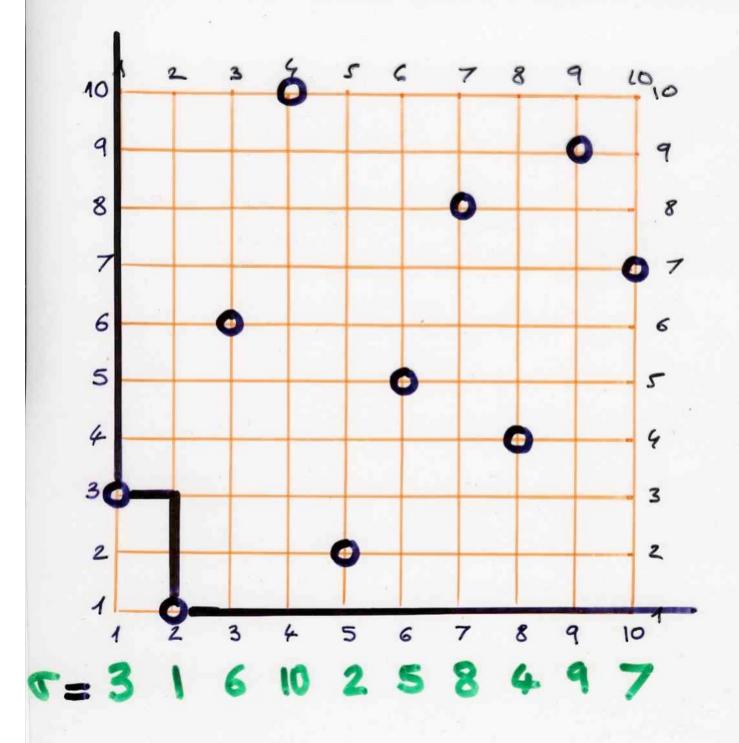
X.V., 1976

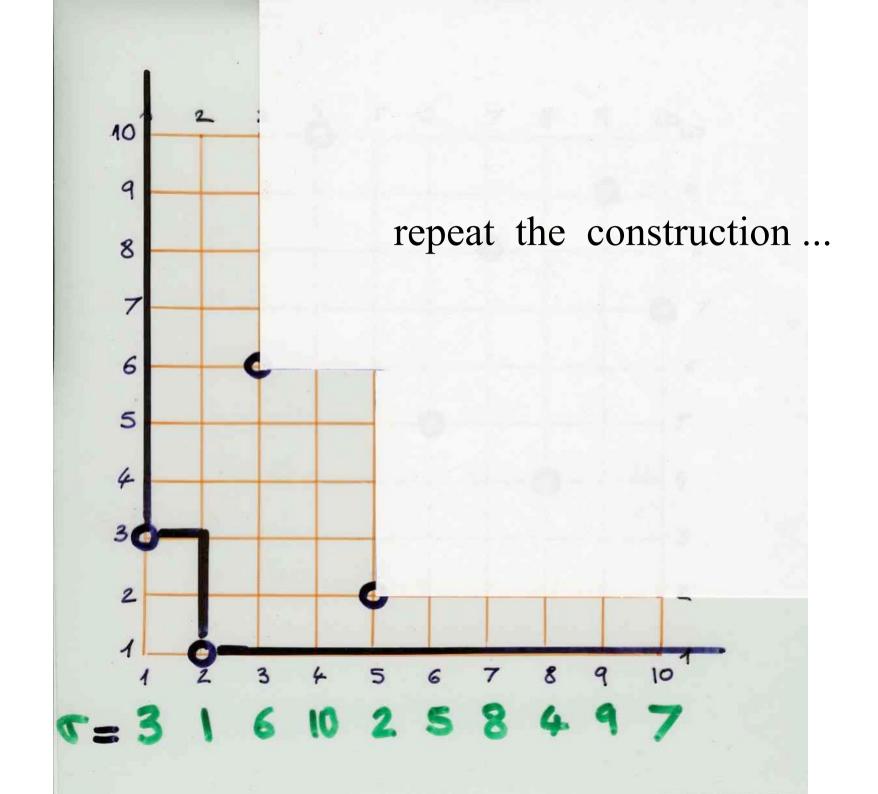


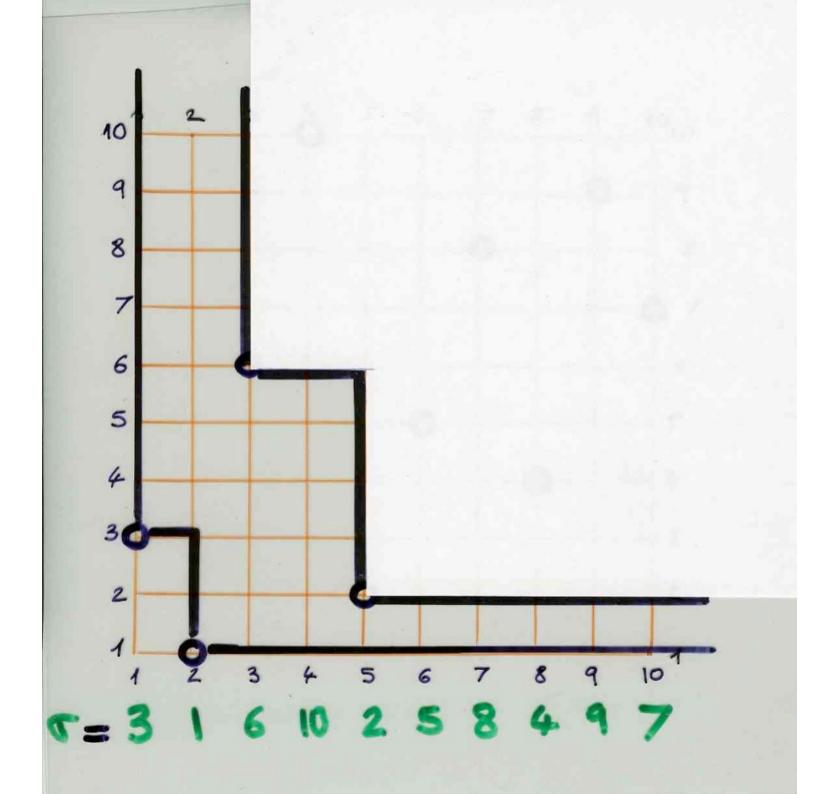


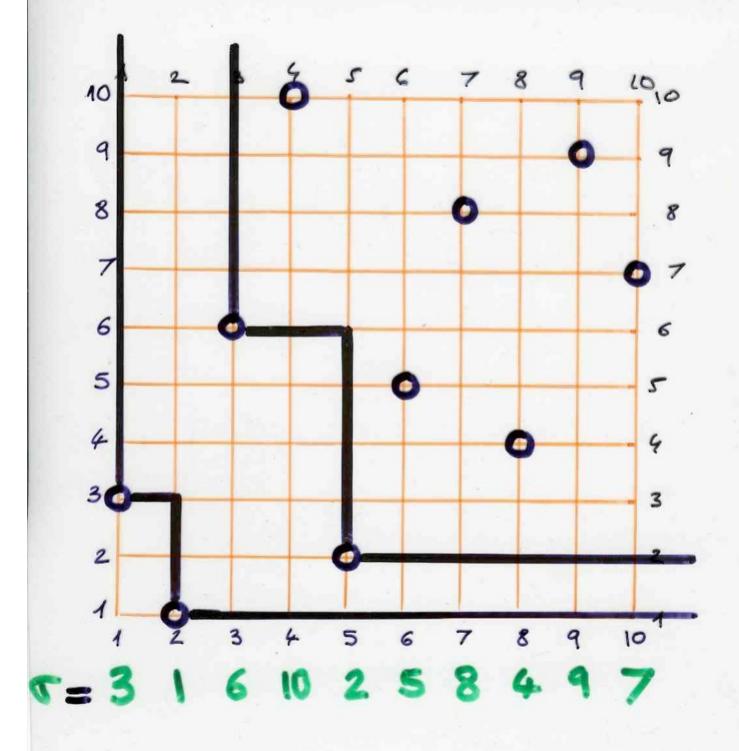


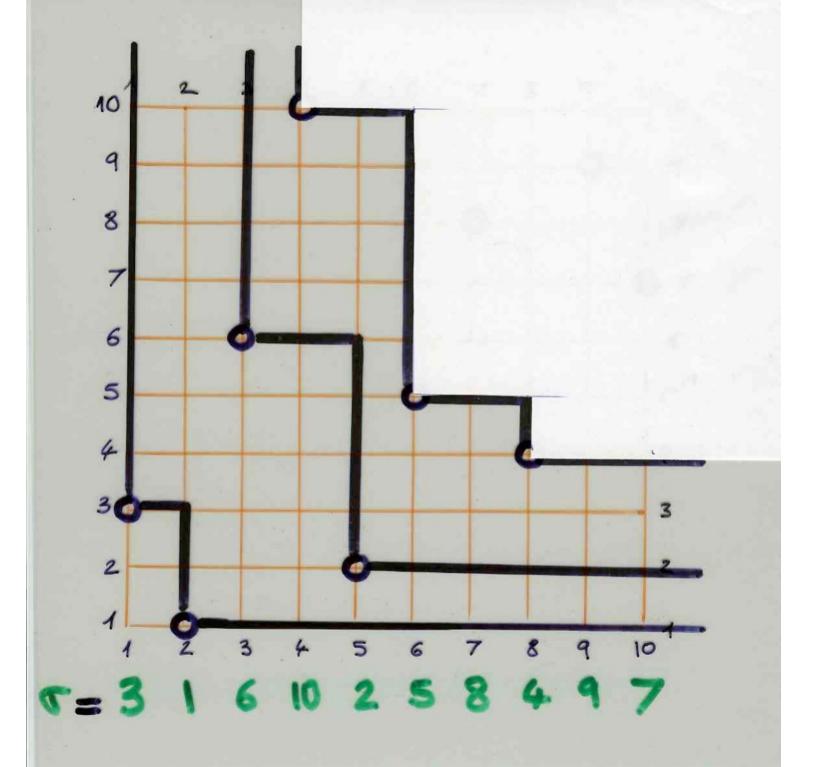


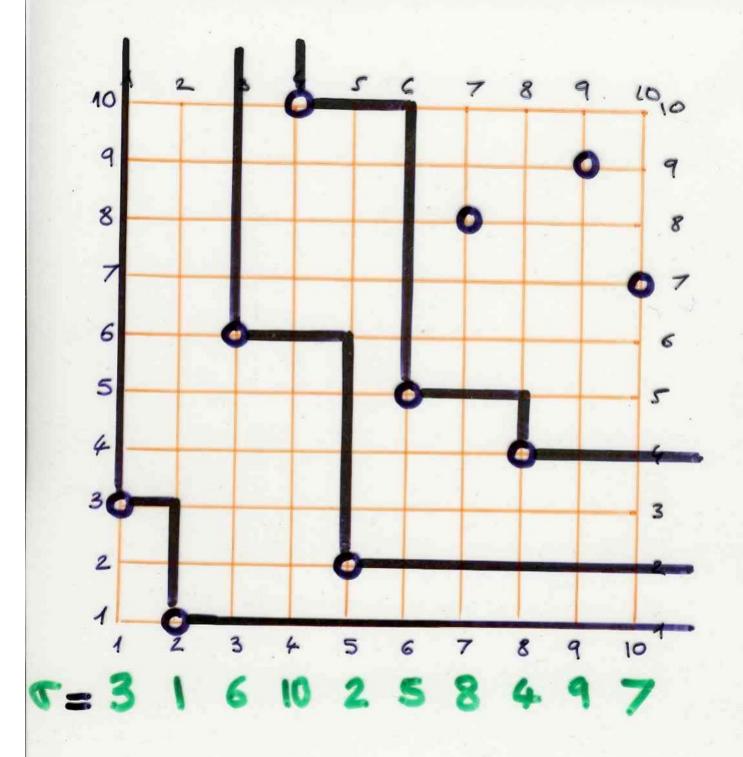


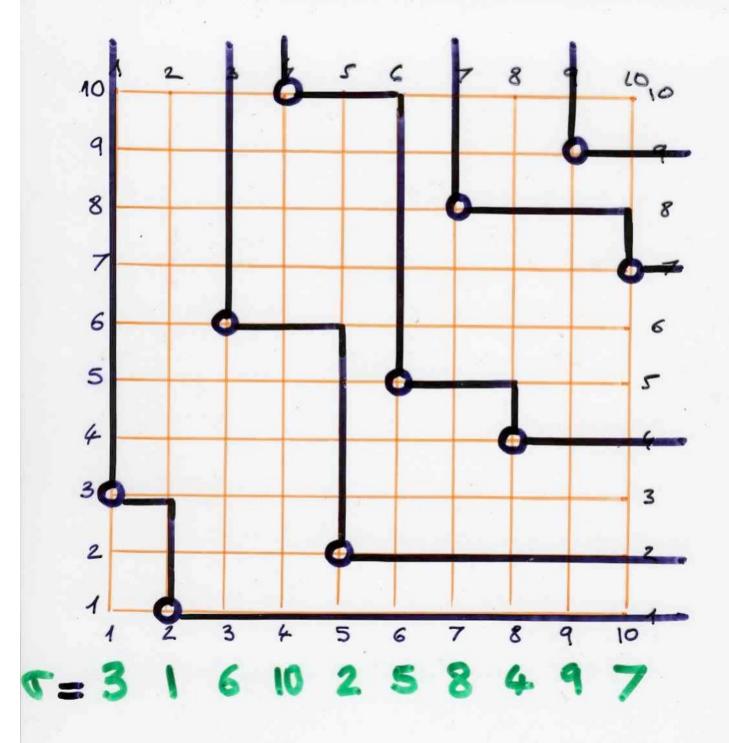


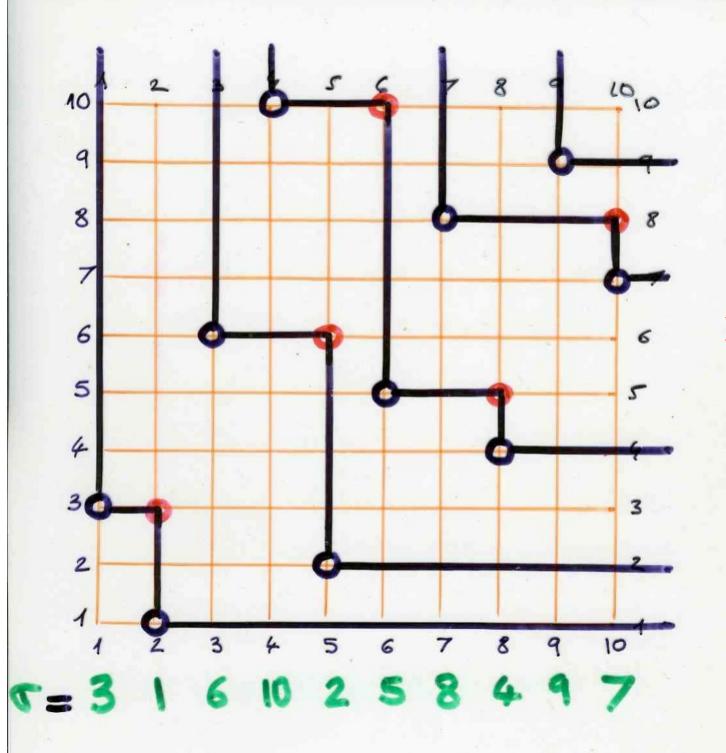




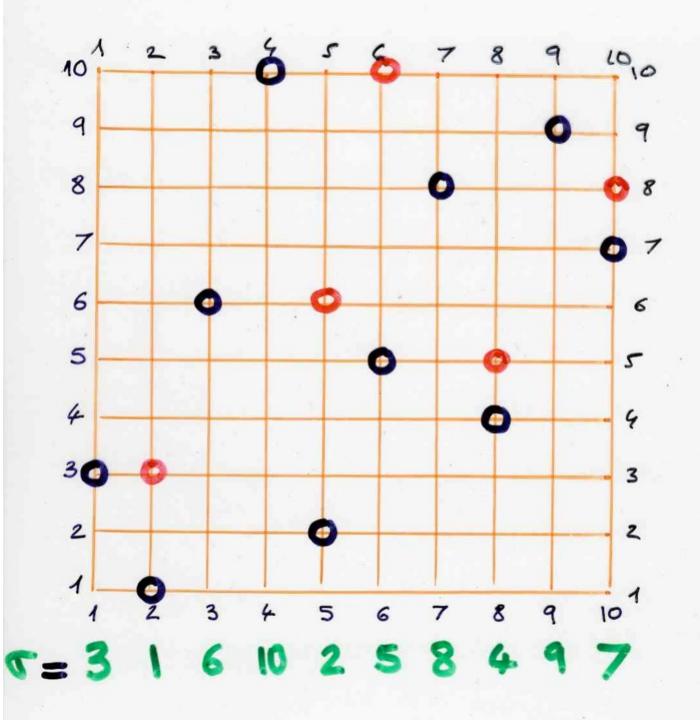




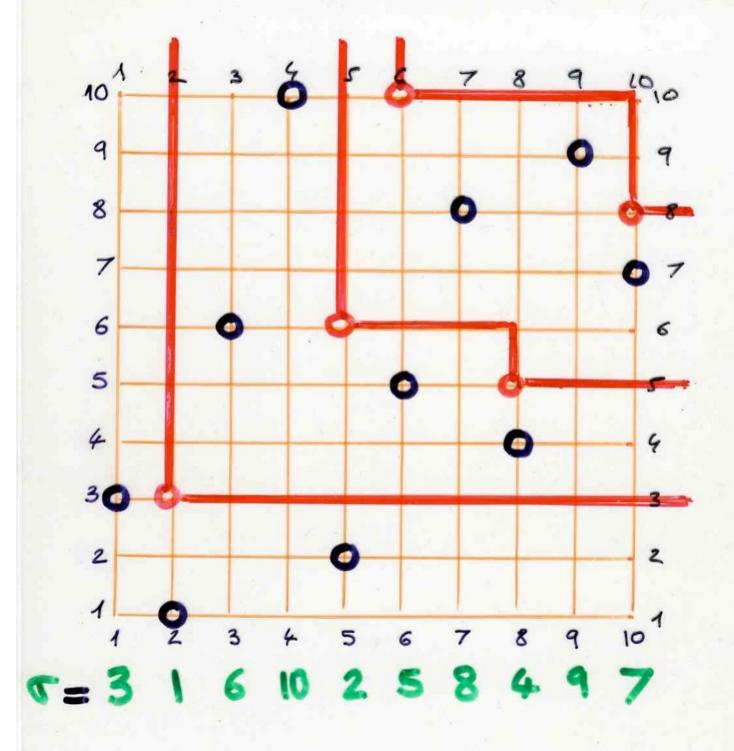


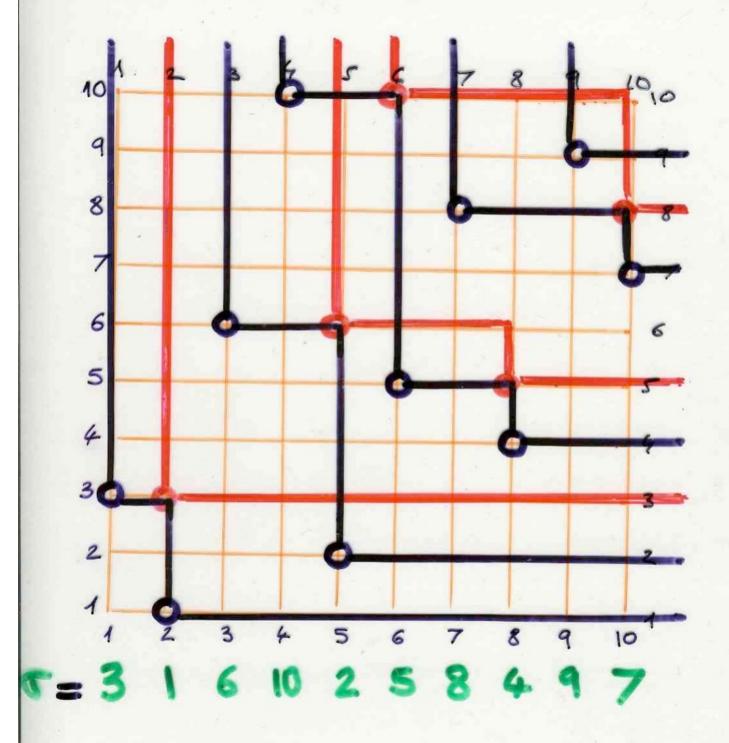


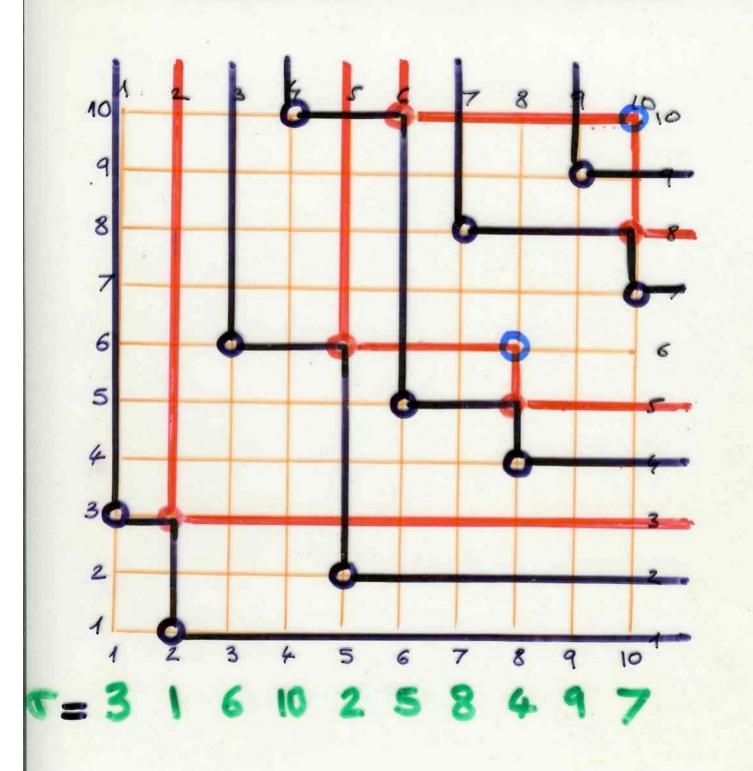
red points



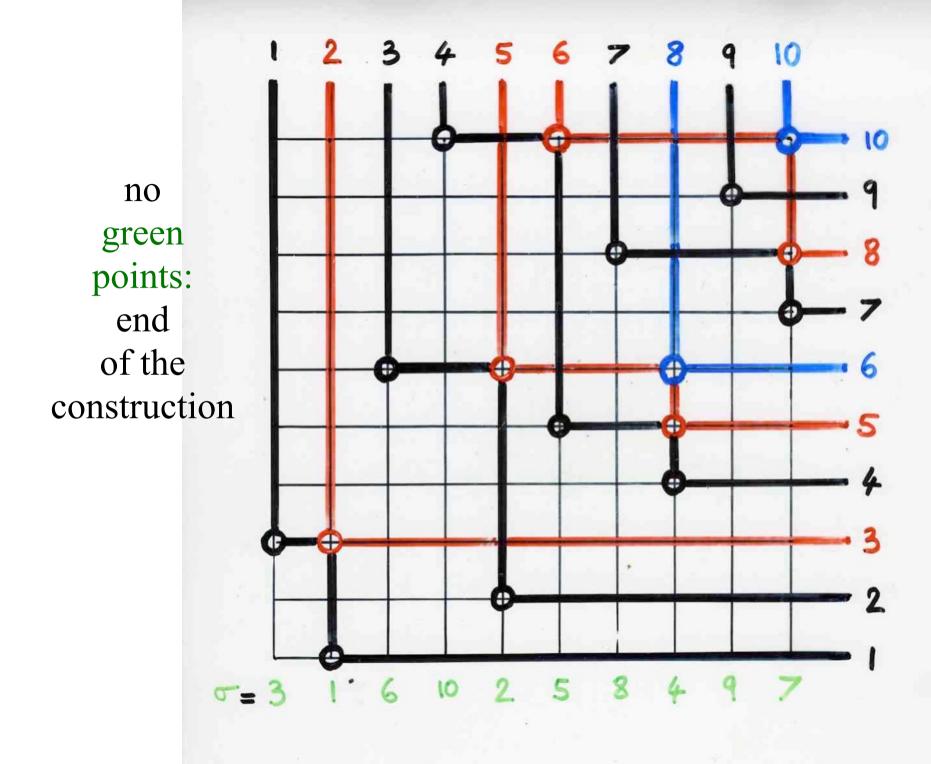
Repeat with the red points the construction of sucessives shadows

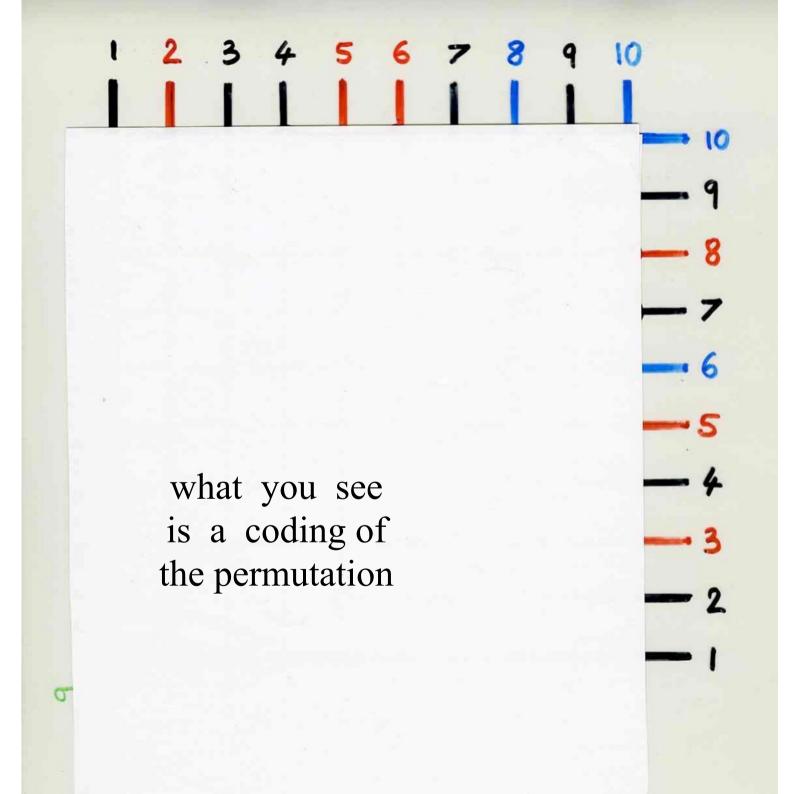


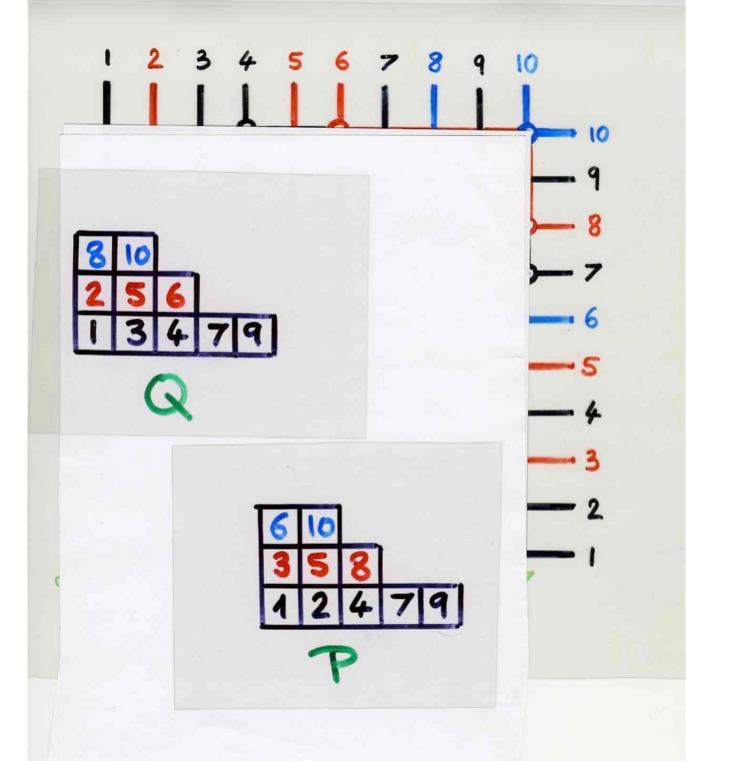


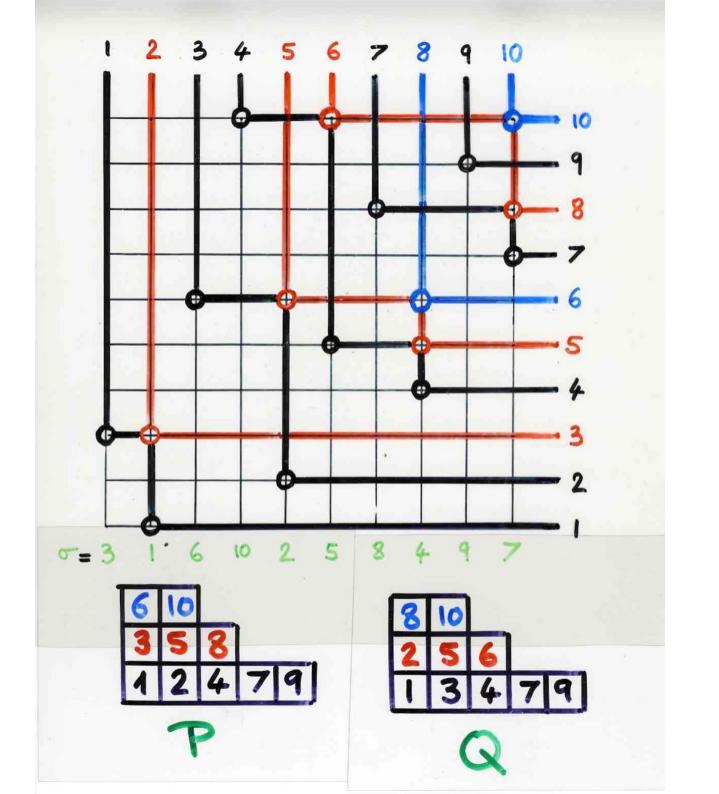


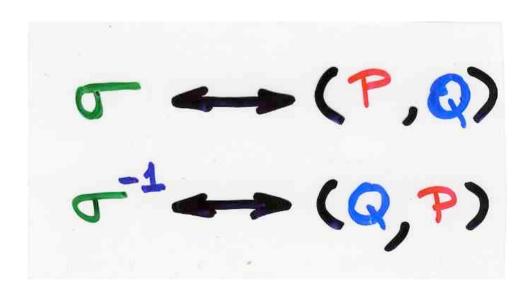
blue points

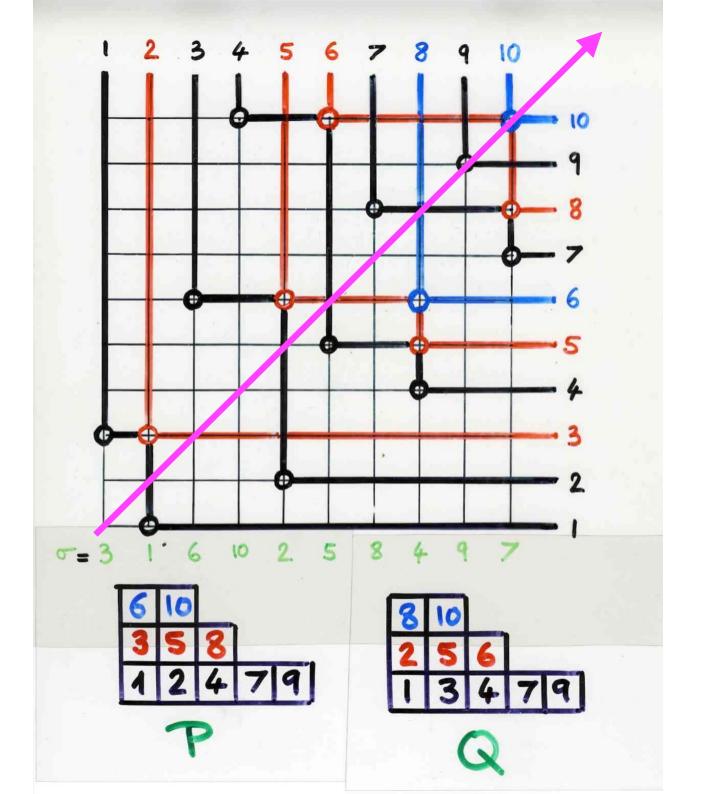












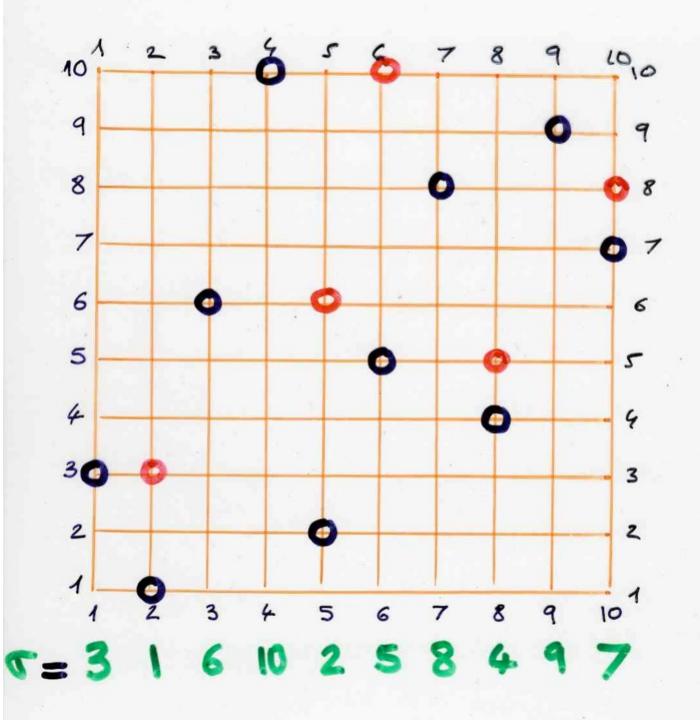
some exercises

exercise

permutation
black points (1,5(i)) - 59(t)

set of red
points

Rive a procedure to construct or knowing $Sq(G) \subseteq [1,n] \times [1,n]$



exercise

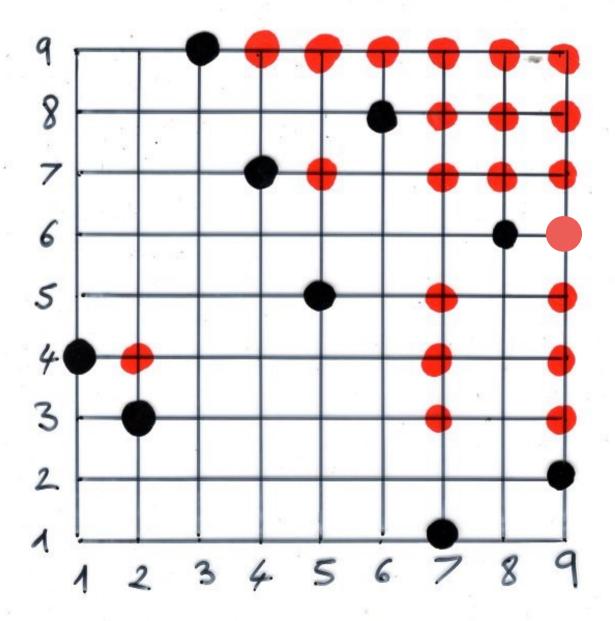
permutation

black points (1,51i)

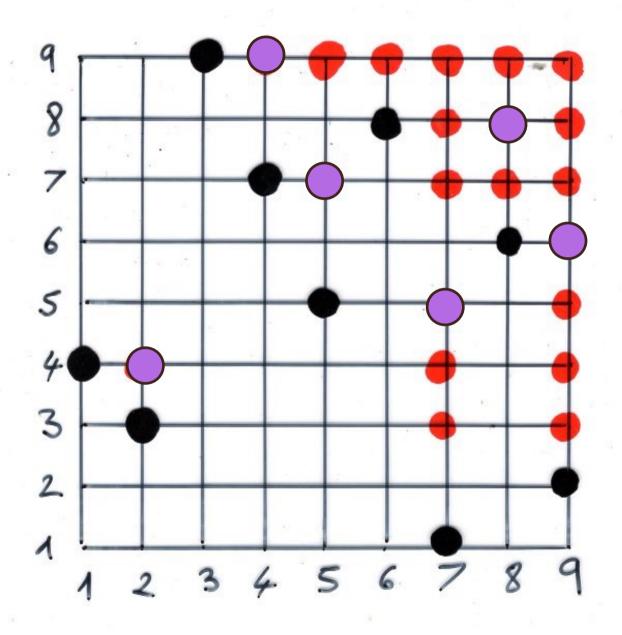
set of red

points

Characterisation of the red points $Sq(T) \subseteq [1,n] \times [1,n]$ It is the set of "wining positions" in a Nim game on the Rothe diagram of T



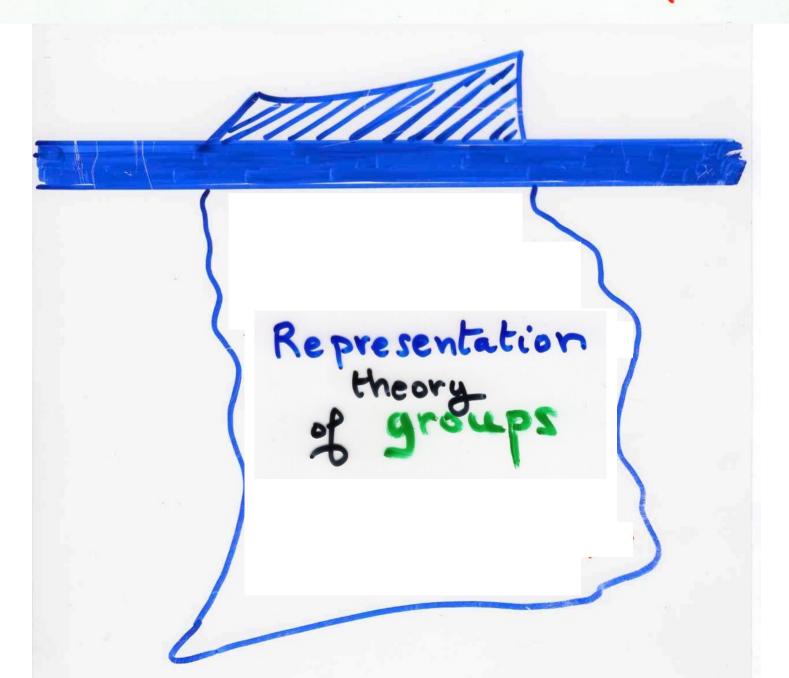
exercise



more about groups theory

The Robinson-Schensted correspondence

The Robinson-Schensted correspondence



Representation theory of groups

see a group G as a (sub)-group
of matrices

G -> Matrices

nxn, coeff. in R

see G as a group of transformations

Important in Physics

standard model of particles

4 fundamental Selectro-magnetism + gravity
forces weak

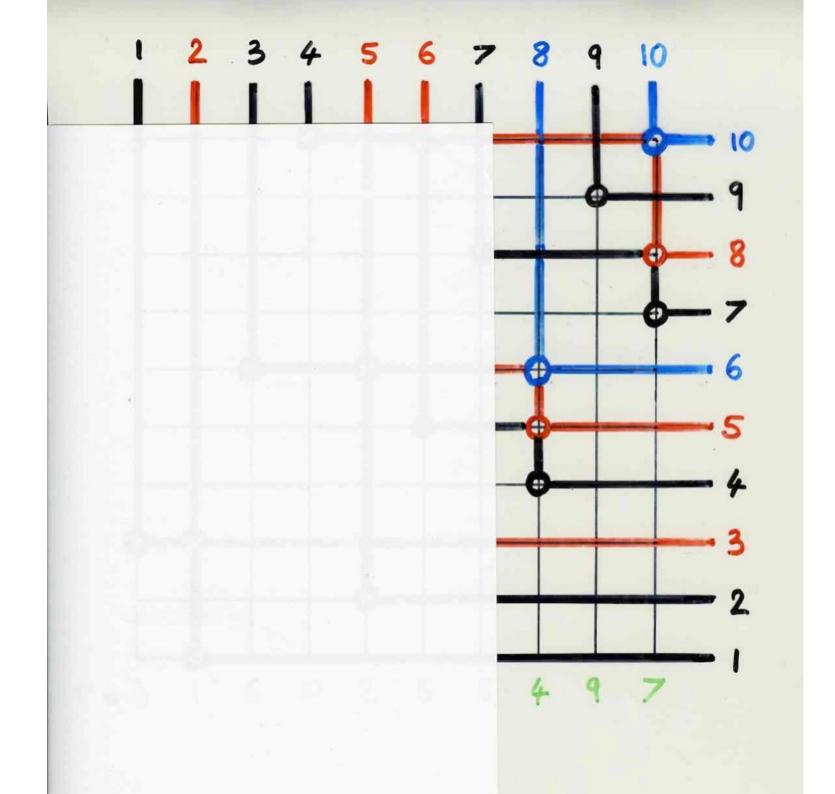
for every group into into ineducible representation decomposition representations analogy [every number n = P1 ... Pr prime numbers decomposition

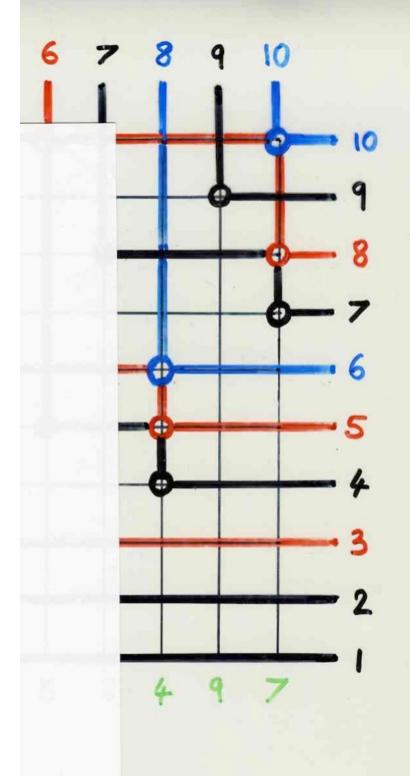
in (finite) group theory:

[G] = \(\sum_{\text{R}} \) (deg R)^2

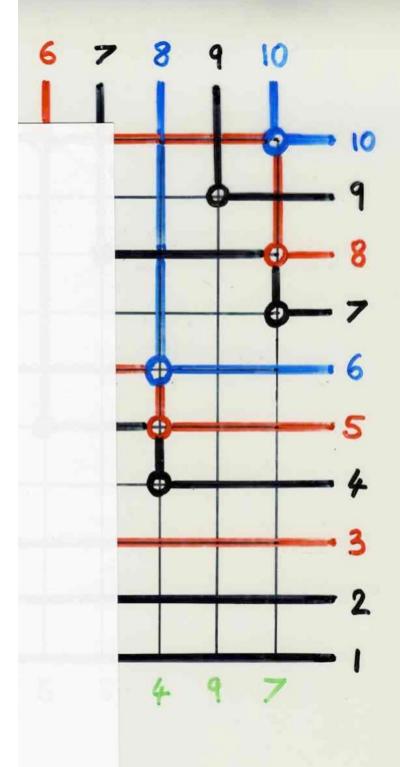
order of the group irreducible representation

proof of the equivalence insertions --- geometric constrution

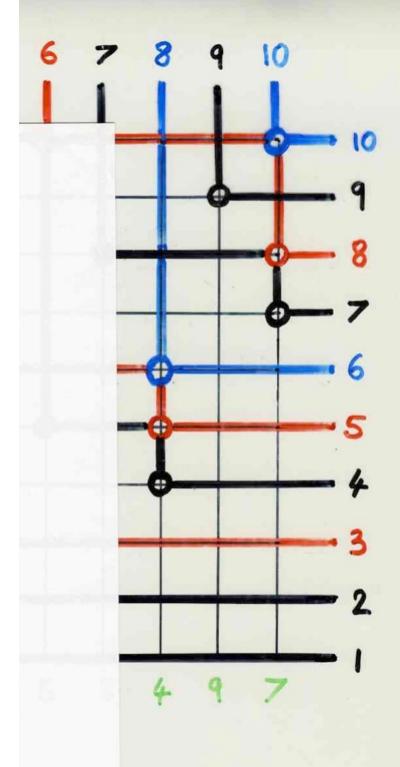




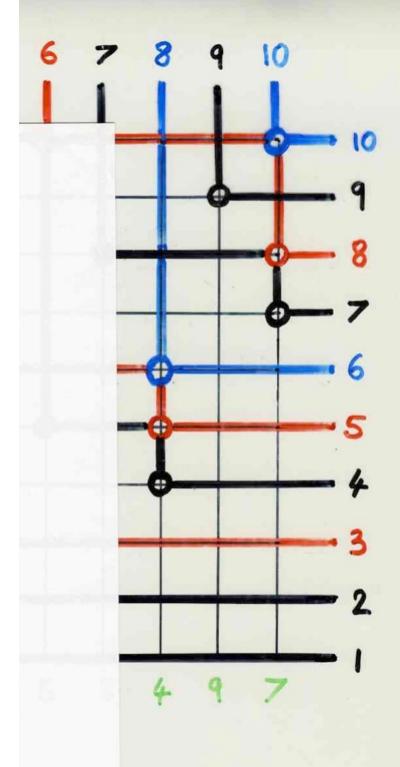
1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	80	4	9	7
	2		5	6					
	A		3	7.	7	1		-	
		-	2	4					
						1			
	3	86	5	10					
				5	8				1
				2	0				4



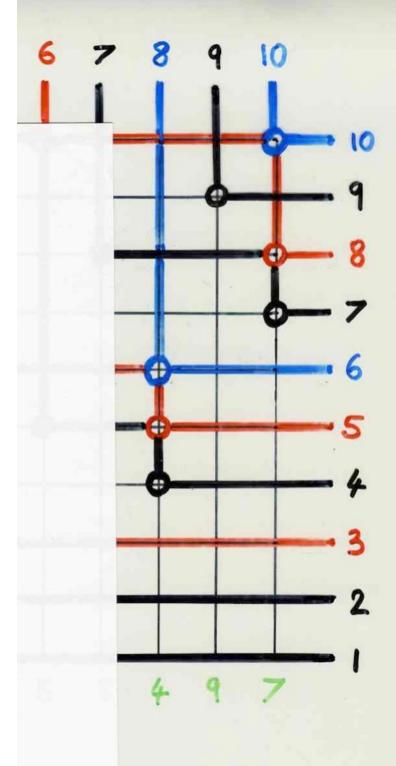
1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7
				7 1					
	2	1	5	6					
			3	7.	7	1	-		
	1		2	4					
	3	96	5	10			5		
				4	Q				



1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7
	2		5	6					
			2	4	7				
	1		2	4					
			-						
						_			
	3	36	5	10			5		
					0				



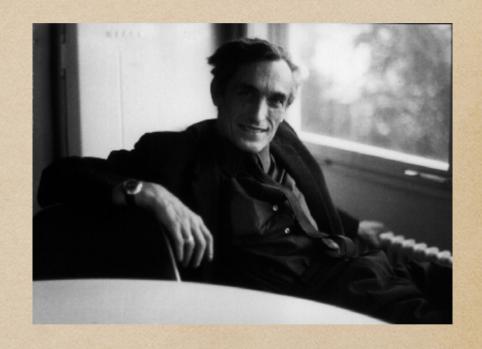
1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7
	2		5	6					
	1		2	4	7				
				7					
	_			*	6				
				L					
	3	3	5	10					
	1		2	4	8				



1	2	3	4		6	7	8	9	1
3	1	6	10	2	5	8	4	9	7
	8	3							
	2		5	6					
					7				
	1		3	4	7				
	*6								
	3	(5][10				•	
						1			
	1		2	4	8				

Jeu de taquin

(without proof)



M.P. Schützenberger

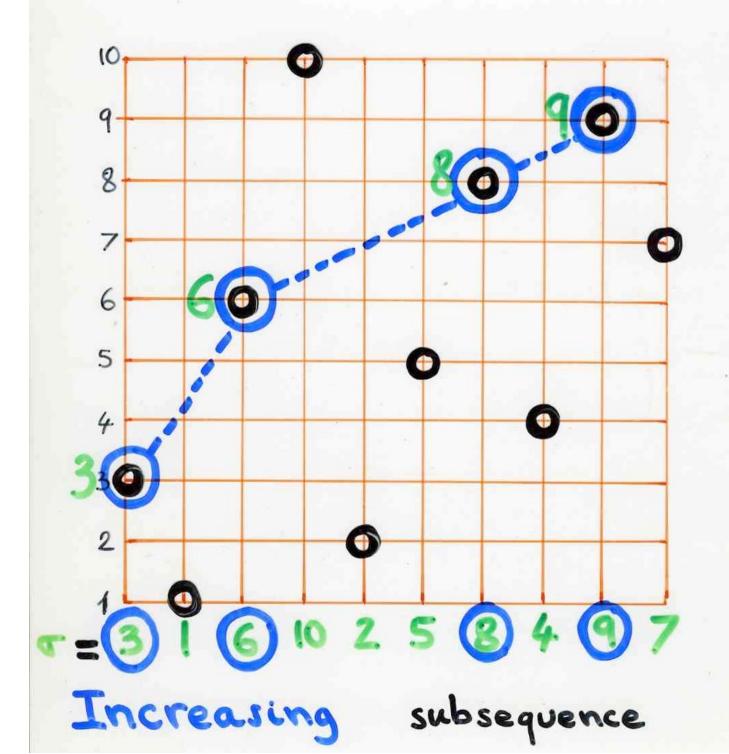
duality

M.P. Schützenberger, 1963, 1972

(without proof)

application:

increasing and decreasing subsequences

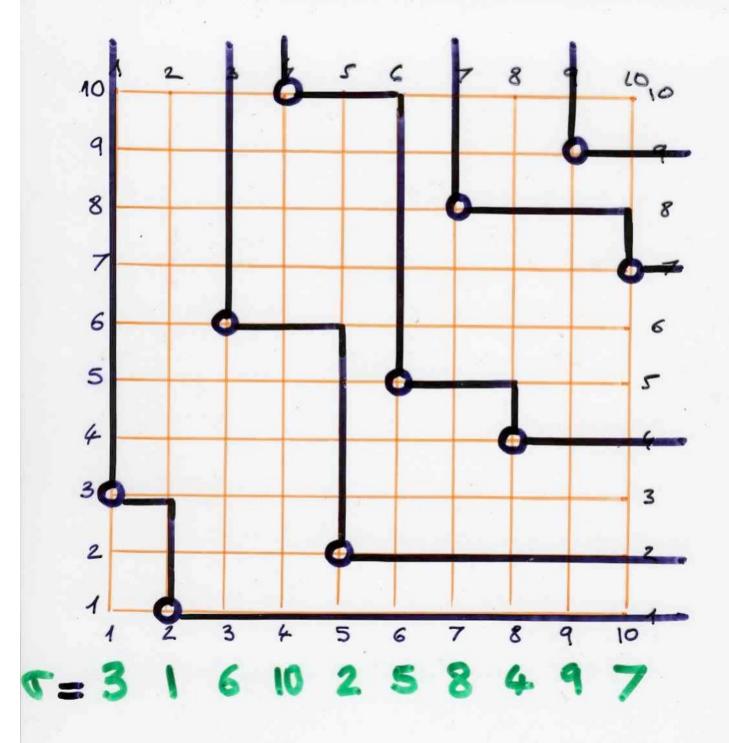


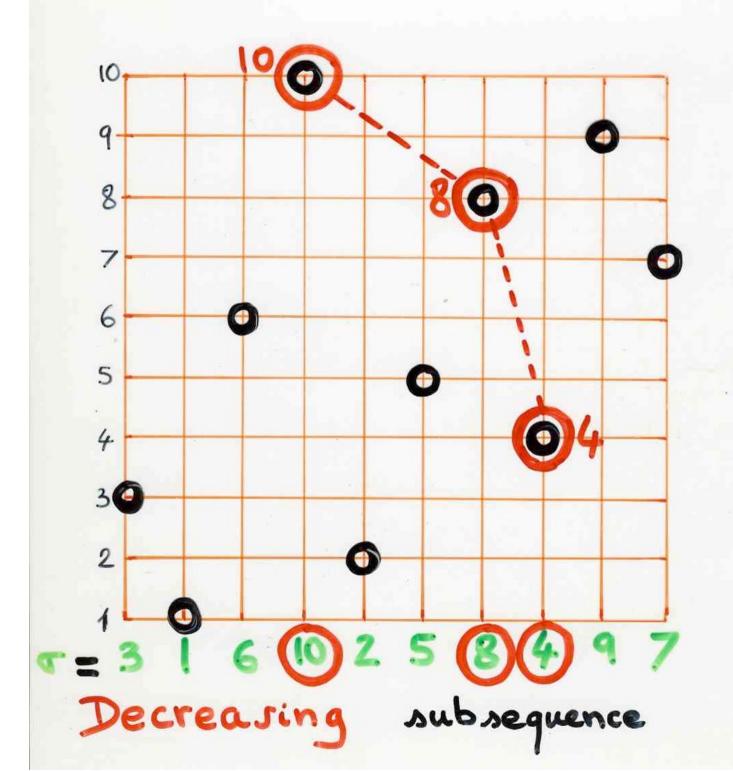
Prop. (T) (P)

The number of elements in the first row of the Young talleaux P and Q is the maximum length of increasing subsequences of T.

exercise

Prove the proposition (using the first set of lines in the "light-shadow" algorithm





Prop. (P,Q)

The number of elements in the first column of the Young talleaux P and Q is the maximum length of decreasing subsequences

To T.

exercise

permutation

black points (1,5(i))

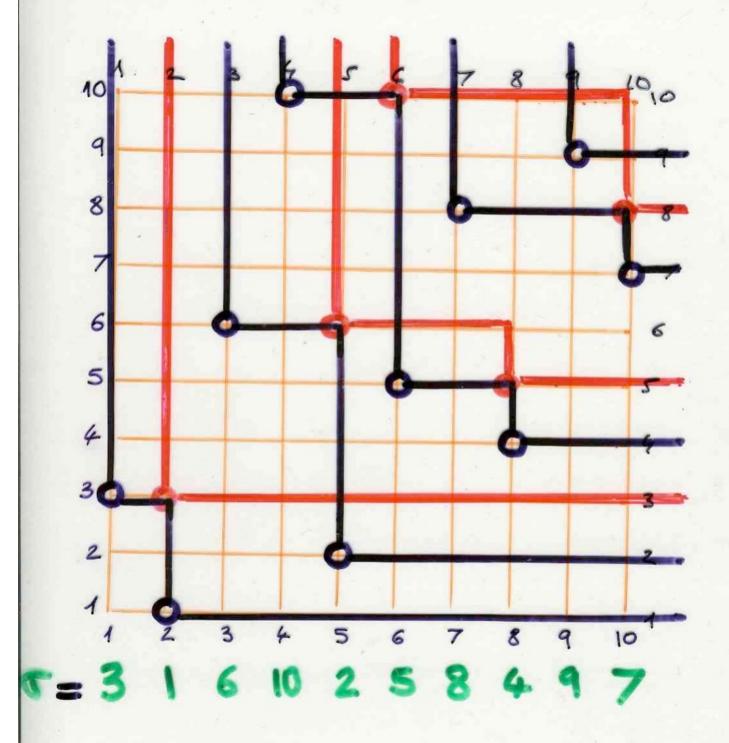
set of red

points

Prove the proposition with the fillwing hint:

light-shadow" a decreasing sequence "light-shadow" a decreasing sequence

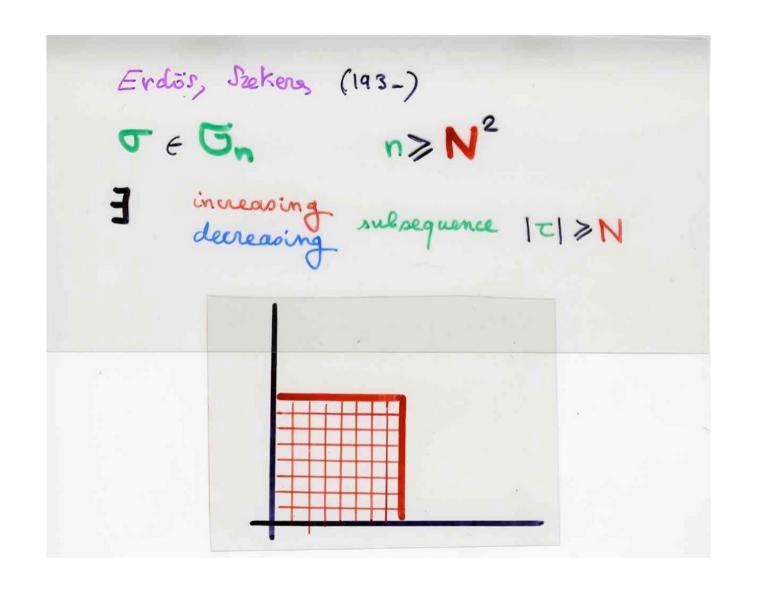
of points of ? (i, T(i)) with fet!

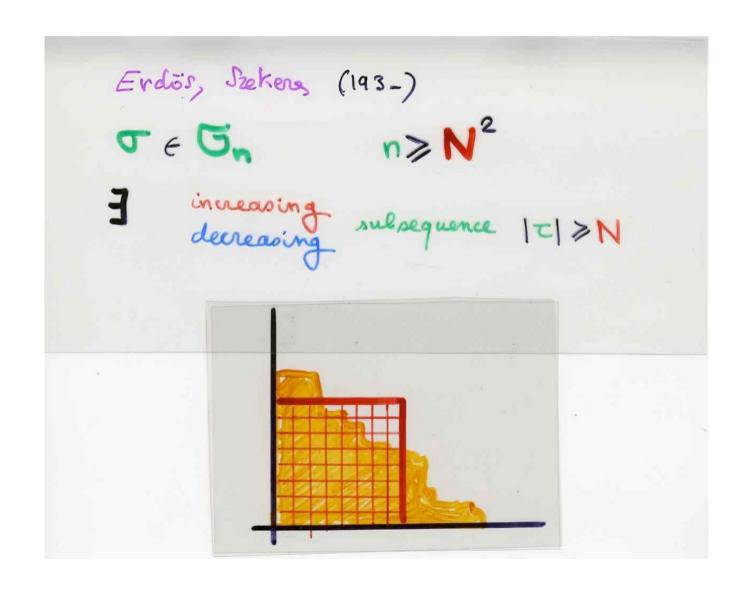


Endos, Szekens (193-)

T E Gn n>N²

Increasing subsequence |T|>N

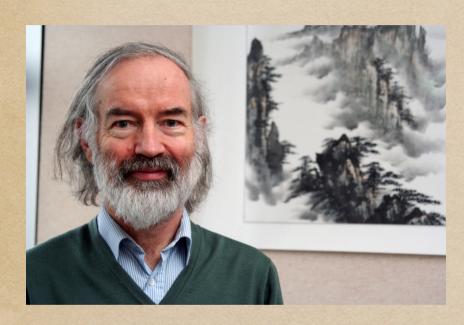




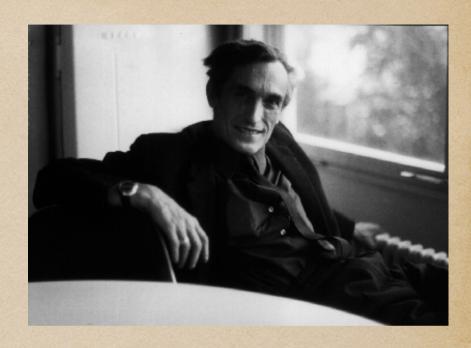
Knuth's transpositions

D. Knuth, 1970

plactic monoid



A. Lascoux



M.P. Schützenberger

Schur functions

