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Exercise 1 
Proof by recurrence on the number of vertices of the binary tree B. 

Let  d(B)  be the difference between the number of external and internal vertices of  B.  
For  B = (L, r, R)  where  r  is the root, L  the left subtree and  R  the right subtree, then  

d(B) = d(L) + d(R) -1. 
From the recurrence hypothesis, d(B) = 1 +1-1 = 1. 
The property is true for the binary tree  B  reduced to a single external vertex B = (v), 
d(B)=1-0=1. 

Q.E.D. 

Another proof is the following: 
For a binary B =( L, r, R), choose an external leaf  v  and replace  v  by the binary tree reduced 
to a single internal vertex (with 2 external vertices) as shown on the figure below. In this process 
the parameter  d(B)  is invariant. 





Correction to the slide in the talk:  
one should write subexceedant function 





Let  σ  be a permutation,  i  be an integer,  1 ≤ i ≤ n, and denote  x =  σ(i).  
Define  f(x)  to be the number of  j, 1 ≤ i < j ≤ n  with  σ(j) < σ(i).  
With the notation of the talk, the reverse bijection g is defined by g(x)=1+f(x). 

The pair  (i,j)  with  σ(j) < σ(i) is called an inversion pair of the permutation  σ  and  f  is 
called the inversion table of the permutation. Here, with the notation of the talk, you need to 
shift by one the values  f(x)  of  f. 

See « ABjC », Part I, Chapter 4a, pp 23-32.   http://www.viennot.org/abjc1-ch4.html 



slide 29 of « ABjC », Part I, Chapter 4a

In this correction of exercise 2 
f is in fact g



slide 30 of « ABjC », Part I, Chapter 4a

In this correction of exercise 2 
f is in fact g





with  n  vertices

Define an elementary binary tree, as a binary tree having a single internal vertex (and two 
external vertices). Any binary tree is obtained by adding successively an elementary binary 
tree on an external vertex, as described in exercise 1. If  B  is an increasing binary tree with  n  
vertices, then  B  has  (n+1)  external vertices and there are  (n+1)  ways to add to  B  an 
elementary binary tree. The single internal vertex (= the root) of this elementary binary tree 
will be labelled  (n+1). We get an increasing binary tree with  (n+1) internal vertices. 
Conversely, from the labels 1, 2, …, (n+1) of the vertices of this increasing binary tree, one 
can recover the different choices made during the insertion process. 

We can conclude that the number of increasing binary trees with  n  vertices is  n! 

It is better to really define a bijection between increasing binary trees and subexceedant 
functions.



A possible bijection with subexceedant functions is defined by  numbering the external 
vertices  1, 2,…, n. For example one possible order is obtained by numbering the 
external vertices « from left to right ». It is defined recursively by the following: 

For a binary tree  B = (L, r, R), first visit the external vertices of  L , then visit the 
external vertices of R. 

Example:



Then the bijection between increasing binary trees and subexceedant functions is 
obtained by labelling the vertices  1, 2, …, n  in the insertion process according to the 
ordering of the external vertices  « from left to right ». (also called  inorder  or  
symmetric order). 

Example (with  f  given in the talk)



For a description of the reverse 
bijection, and more details, see: 
« ABjC », Part I, Chapter 4a, pp 74-92.    
http://www.viennot.org/abjc1-ch4.html 

In fact a direct  bijection between increasing binary trees and permutations can be 
defined in the. following way. Again define an order (called inorder or symmetric order) 
on the internal vertices of a binary tree, in the same way as above: 
for a binary tree  B = (L, r, R), first visit the vertices of  L , then visit the root  r, then visit 
the internal vertices of  R. Reading the internal vertices of  B. according to this order, we 
get a permutation  σ (written as a word). The map  B           σ  is a bijection (called the 
projection of the increasing binary tree B). 

example: 







An exemple of this identity with i = 5, j = 3 

56 = 1 + 3 + 6 +10 +15 +21



Proof: 
As explained in the talk,we use the interpretation of binomial coefficients with paths on 
a grid, going from  (0,0)  to  (i,j). 
For any such path   ω, let   l   be the abcissa of the last North step of the path. This last 
North step goes from the point  (l, j-1)  to the point  (l, j). (see Figure below). The 
number of such paths is the binomial coefficient appearing in the left hand-side of the 
identity. 

Q.E.D.
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Proof of a): 
The set of matchings of the segment  [1, n]  can be divided into two disjoint classes: the 
matchings where  (n)  is an isolated point  (i.e. (n) is not contained in an edge of the 
matching) and the matchings where  [(n-1), n]  is an edge of the matching. The first 
class is in bijection with matchings of the segment  [ (n-1), n]. The second class is in 
bijection with matchings of the segment  [(n-2), n]. 

Thus the number of matchings of the segment  [1, n] satisfies the same linear recurrence 
relation as the Fibonacci numbers. The initial conditions are the same. The number of 
such matchings is thus the Fibonacci number.   (see Figures below).  . 





Proof of b): 
There is a bijection between matchings of  [1, n]  with  k  edges and subsets with  k 
elements of a set with  (n-k) elements. It suffice to « shrink » each edge of the matching 
into a point (see Figure below).







Elementary calculus gives:









The reciprocal bijection is constructed by the following algorithm. 

Follow the Dyck path from left to right. Suppose one associate a binary tree  B  after 
following the first  i  steps. Some external vertices are called « closed »,some are called 
« open ». The open external vertices are ordered « from left to right » (see exercise 3). 

If step  (i+1) is North-East, then add an « elementary » binary tree on the first open external 
vertex. Then the two new external vertices are labelled « open ». 

If step  (i+1) is South-East, then close the first open external vertex of  B.



An example is given on the Figure.  
Closed external vertices are labelled with a 
red cross. 

Step 6 of the Dyck path is North-East.  
Step 7 of the Dyck path is South-East. 

An example of the complete reverse 
bijection is given on the set of slides 
STEM21_exo7 available on the web page 
www.viennot.org/abjc-stems21.html 
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Exercise 8 is giving a formula for the 
famous « ballot problem », solved at the 
end of the 19th Century (J.Bertrand, 
D.André, H. Delannoy, …), which can be 
formulated in term of paths: 

find a formula for the number of paths 
with elementary steps North and East, 
going from (0,0) to (a,b) and located below 
the diagonal.



See the extension with i and j and the 
proof in ABjC, PartI, Ch 2c, pp 40-47

Giving a formula for the number of paths 
with elementary steps North and East, 
going from (0,0) to (a,b) and located below 
the diagonal, 

is obviously equivalent to give a formula 
for the number of Dyck paths of length 2n 
such that the length of the longest 
sequence of North-East steps is equal to i. 

This number is: 



Solving the problem of the 
enumeration of such paths going 
from  (0,0)  to  (a,b) and located 
below the diagonal  D  is just an 
extension of the proof given in the 
talk for the case of Catalan 
numbers  (a,b) = (n,n). We use the 
same « reflection » principle. 

The total number of paths going 
from  (0,0) to ( a,b)  is 

From this total we subtract the number of 
«bad »  paths, i.e. paths which cross the 
diagonal  D. Such paths are in bijection with 
paths going from  (-1,1)  to  (a,b). The 
bijection is given in the following Figures. 



A « bad » crossing the diagonal 
D. Such path  ω  will intersect 
the line  Δ, a line parallel to 
main diagonal  D, passing 
through the point  (0,1). 

We denote by  I  the first 
intersection of the path ω with 
Δ. 



We denote by  I  the first 
intersection of the path  ω  with  Δ. 
The path  ω  is divided into two 
portions:  ω’  from  (0,0 ) to  I  and 
η  from  I  to  (a,b). 

The initial portion  ω’  of the path 
ω  from  (0,0)  to  I  is reflected 
according to the line  Δ. (in red on 
the Figure). We get a path  ω’’ 
going from  (-1,1)  to  I. Gluing  ω’’ 
and  η, we get a path  R(ω) going 
from  (-1,1)  to  (a,b).  

It is easy to see that the map  R  is a 
bijection between « bad » paths and 
paths going form  (-1,1)  to  (a,b). 

Thus, the number of bad paths is the binomial coefficient

and the number of good paths is



We have to compute                                                     

This formula solves the « ballot » problem.



The formula for the number of 
paths with elementary steps North 
and East, going from  (0,0)  to  (a,b) 
and located below the diagonal, 

is obviously equivalent to give a 
formula for the number of Dyck 
paths of length 2n such that the 
length of the longest sequence of 
North-East steps is equal to  i. 

The second part of the exercise is to 
prove the following equality 

where



Q.E.D.

with

For any integers  m  and  n, it is 
easy to prove (by calculus or with 
a trivial bijection) that:

for we 
have

Going back to the value of we get:



9



9











An example of the reciprocal bijection is given on the set of slides STEM21_exo10 
available on the web page  www.viennot.org/abjc-stems21.html 





describe the reverse  bijection

 binary  trees triangulations

An example of the algorithmic 
construction  of the reciprocal 
bijection is given on the set of slides 
STEM21_exo11 available on the web 
page  www.viennot.org/abjc-
stems21.html  



Let  B  be a binary tree with n (internal) vertices.  First we label these vertices by the 
integers  1 ,2, …, n such that the labels are increasing when one goes from the root to any 
external vertex of  B (i.e. we get an increasing binary tree, see exercise 3). 

To the root of  B  (labelled « 1 ») we associate a triangle, labelled by  1, with one edge 
labelled « inactive » and called the « root edge » (coloured in orange on the figures). In the 
algorithmic construction, to each vertex of  B  we associate a triangle. One of the edge will 
get a label « inactive » (in black on the figures), the two other being labelled « active » (in 
blue on the figures). The triangles are embedded in a plane and we can define the left edge 
(resp. right edge) as being the first (resp. second) active edge when turning clockwise 
around the triangle, starting from the (unique) inactive edge. (see Figure below). 

During the construction, after reading the vertices labelled 1, 2,…, i of the binary tree  B, we 
get a triangulation of a polygon with  i+2  edges, all of them are active, except the root edge, 
the other edges of the triangles (i.e. the diagonals of the triangulation) are inactive. Each 
triangle is labelled by an integer  j, 1≤j≤i. 

Step  (i+1). In the increasing binary tree  B, the vertex labelled  (i+1)  is the left (resp. right) 
son of the unique vertex labelled  j. On the triangle labelled  j, we add a new triangle on the 
left (resp right) active edge. This edge become inactive. This triangle is added « outside » of 
the polygon and is labelled  (i+1). 

At the end after  n  steps, we get a triangulation of a (convex) polygon having  (n+2)  edges, 
one of them being  distinguished as the root. The polygon is « labelled », we mean that it is 
not defined up to a rotation. This triangulation is independent of the increasing labelling ot 
the binary tree  B.  
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This last exercise is to give a proof for the expression of  Z_n the partition function of  the 
TASEP (with parameter  α  and  β), a toy model in the physics of systems far from equilibrium.

In the talk I gave an expression of this partition function in term of binary trees. For a binary 
tree  T, lb(T) (resp.  rb(T)) denotes the length (number of edges) of the principal left (resp. 
right) branch, that is the number of edges going always left (resp.right) from the root of  T.



In the bijection between binary 
trees and Dyck paths given in the 
talk (see the violin video), the 
parameter  lb(T), length of the 
principal left branch of  T becomes 
the length of the maximal sequence 
of North-East steps of the Dyck 
paths. 

On the figure  n = 10,  lb(T) = 2

From exercise 8 we deduce that the number of 
binary trees having n vertices with  lb(T) = i  is 

Thus this last exercise is to prove that the summation giving  Z_n involving 
the distribution of two parameters (length of the left and right branch) can be 
reduced to the distribution of a single parameter.



Here we use the right principal 
branch of the binary tree (in 
blue) corresponding to the 
longest sequence of South-step 
of the Dyck path, as in ABjC, 
PartIII, Ch 4a, p112-114   



There exists a bijection between binary trees with (n+1) vertices and binary trees where the 
internal vertices of the right branch are labelled red or blue, starting from the root with a 
sequence of red vertices (may be empty), followed by a sequence of blue vertices (may be 
empty).

See ABjC, PartIII, Ch 4a, p112-114



Thus

See ABjC, PartIII, Ch 4a, p112-114




