Course IMSc, Chennaí, Indía January-March 2018

The cellular ansatz: bijective combinatorics and quadratic algebra

> Xavier Viennot CNRS, LaBRI, Bordeaux

www.viennot.org

mírror websíte www.ímsc.res.ín/~víennot

Chapter 4 Trees and tableaux

Ch4a

IMSc, Chennaí March 1st, 2018 Xavier Viennot CNRS, LaBRI, Bordeaux <u>www.viennot.org</u>

mirror website www.imsc.res.in/~viennot

TASEP and Catalan alternative tableaux

 $\mathcal{D}E = qE\mathcal{D} + E + \mathcal{D}$

In the PASEP algebra

any word w(E, D) can be uniquely written $w(E, D) = \sum_{q \in T} q^{k(T)} E^{i(T)} D^{j(T)}$ alternative tableaux profile to k(T) = nb of cello i (T) = nb of rows without () j (T) = nb of columns without () Def- profile of an alternative talleau VE word WE YE, D}*

seminal paper "matrix ansatz" Perrida, Evans, Hakim, Pasquier (1993) D, E matrices (may be 00) colum vector V row vector W 9=0 TASEP (9,3) $\begin{cases} DE = D + E \\ D|V> = \overline{\beta}|V> \\ \langle w|E = \overline{\alpha} \langle w| \end{cases}$

Corollary. The stationary probability essociated to the state $T = (T_1, ..., T_n)$ $Proba_{\tau}(q; \alpha, \beta) = \frac{1}{2} \sum_{k=1}^{\infty} q^{k(\tau)} - i(\tau) - j(\tau)$ alternative talleaux profile T k(T) = nb of cells i(T) = nb of rows without () j(T) = nb of columns without ()

Catalan alternative tableaux

Pef Catalan alternative talleau T alt. tal. without cells i.e. every empty cell is below a sed cell or on the left of a llue cell

Characterísatíon of alternative Catalan tableaux

Catalan permutation tableaux

Permutation Tableau

Catalan permutation tableaux

(iii) only one 1 in each column

Catalan alternative tableaux

 $C_n = \frac{1}{(n+1)} \begin{pmatrix} 2n \\ n \end{pmatrix}$

bíjection with: - binary trees - pairs (u,v) of paths

and

complete binary trees

$$\mathbf{\mathbf{e}}_{\mathbf{e}} = (\mathbf{\mathbf{e}}_{\mathbf{e}}, \mathbf{\mathbf{e}}_{\mathbf{e}})$$

/ = (·, ·, Ø)

 $\bullet = (\not \circ, \bullet, \bullet) \quad \bullet = (\not \circ, \bullet, \not \circ)$ • = (Ø,•,Ø)

C(t) generating function of Catalan numbers

 $C(t) = \sum C_n t^n$ 17,0

Catalan number $C_n = \frac{1}{(n+1)} \begin{pmatrix} 2n \\ n \end{pmatrix}$

 $y = 1 + ty^2$

-> BJCI Ch1, Ch2

recurrence $C_{n+1} = \sum_{i+j=n} C_i C_j$ $C_o = 1$

classical enumerative combinatorics

 $y = 1 + ty^2$ algebraic equation

 $B = \{\bullet\} + (B \times \bullet \times B)$ linary tree

 $y = 1 + t y^2$

algebraic equation

$$C_{n} = \frac{1}{n+4} \begin{pmatrix} 2n \\ n \end{pmatrix}$$
$$= \frac{(2n)!}{(n+1)! n!}$$
$$n! = 1 \times 2 \times ... \times n$$

exercíse

bijective proof of

 $2(2n+1)C_{n} = (n+2)C_{n+1}$

binary trees n vertices complete binary trees (2n+1) vertices

Int external vertices

height h(s) of the vertex s

left-height hl(s) right-height hr(s)

h(s) = hl(s) + hr(s)

traversal of a binary tree

- visit the root $(\mathcal{J} \mathcal{B} \neq \emptyset)$
- . then visit the left- subtree
- . then visit the night subtree

inorder (symmetric order)

visit the left- subtree visit the root

pair of paths (u,v)

binary tree B \longrightarrow pair of paths (u,v)

1 2

The left edges (in blue) of the binary tree are ordered according to the in-order (= symmetric order) of the first vertex of the edge. Here the order is a, b, c, d.

Then the right height of a left edge is the number of right edges (in red) needed to reach the vertices of that left edge.

we get the vector:

A path u (here in yellow) is uniquely defined by the following process: the South steps are ordered from top to down and associated to the order of the blue edges a,b, c, d. The distance from each North step of u to the North-East border (the path v) is given by the corresponding blue number (the right height of the left edge)

the «push-gliding» algorithm

reverse lijection

the "push-gliding" algorithm

reverse lijection

the "push-gliding" algorithm

bíjection Catalan alternative tableaux bínary trees

a Catalan alternative tableau

the extended Catalan alternative tableau

for each blue point add a vertical (green) edge below the point for each red point add an horizontal (green) edge at the left of he point

one get a binary tree

the associated extended (also called complete) binary tree

2nd bijection Catalan alternative tableaux binary trees

This algorithm based on a kind of « jeu de taquin » on « tableaux and trees » is reversible. One get a bijection between Catalan alternative tableaux and binary trees, which is the same as the one described on slide 115.

Catalan alternative talleaux Proposition The map defined above is a bijection between alternative tableaux with profile V and binary trees with canopy V

TASEP, alternative Catalan tableaux and binary trees
Troposition The map defined above is a bijection between alternative tableaux with profile V and binary trees with canopy V

i(T) = lpb(B) length of left principal branch j(T) = rpb(B). length of right

Catalan alternative talleaux $T \rightarrow B$ Catalan binary alternative tree talleau profile v = comopy v ofB i(T) = lpb(B)j(T) = rpb(B).

 $\mathbf{\Lambda} = (\tau_{\mathbf{A}}, \dots, \tau_{\mathbf{n}})$

 $P_n(s; \alpha \beta) = \frac{1}{Z_n} \sum_{B} \alpha^{-lpb(B)} \beta^{-rpb(B)}$ binary tree carrie

 $Z_{n} = \sum_{1 \leq i \leq n} \frac{i}{(2n-i)} \binom{2n-i}{n} \frac{\overline{\alpha}^{(i+1)} - \overline{\beta}^{(i+1)}}{\overline{\alpha}^{i} - \overline{\beta}^{i}}$ partition $1 \leq i \leq n$ $\overline{d} = \overline{d}^{1}$ $\overline{B} = \overline{B}^{1}$ function

$$\frac{i}{(2n-i)}\binom{2n-i}{n}\left[\overline{a}^{(i)}+\overline{a}^{(i-1)}\overline{\beta}+\ldots+\overline{a}\overline{\beta}^{(i-1)}+\overline{\beta}^{(i)}\right]$$

 $Z_{n} = \sum_{1 \leq i \leq n} \frac{i}{(2n-i)} \binom{2n-i}{n} \frac{\overline{a}^{(i+1)} - \overline{\beta}^{(i+1)}}{\overline{a}^{i} - \overline{\beta}^{i}}$ partition
function

$$\sum_{n \neq 0} Z_{n} t^{n} = \frac{1}{(1 - \overline{z}(t))} x \frac{1}{(1 - \overline{z}(t))}$$

$$\mathbf{C}(t) = \sum_{n \ge 0} \mathbf{C}_n t^n$$

 $y = 1 + ty^2$

$$\begin{cases} DE = D + E \\ D|V > = \overline{p}|V > \\ \forall |E = \overline{a} < \forall | \end{cases}$$

de Contration, Makim, Jasquier (1993)

9=0 TASEP (4,3)

bijection

Catalan alternative tableaux pair of paths

reverse bijection

paír of paths Catalan alternative tableaux

commutative diagram

The Adela bijection

demultiplication In the PASEP algebra

see Ch 2c, p3-8 duplication of equations in quadratic algebrea Ch 2c, p9-15 duplication in the PASEP algebra

 $\mathcal{D} E = E \mathcal{D} + E X_{A} + Y_{A} \mathcal{D}$

 $X_{A} E = E X_{2}$ $X_{i} E = E X_{i+1}$ $D Y_{i} = Y_{i+1} D$ $D Y_{i} = Y_{i+1} D$

 $X_i Y_j = Y_j X_i$

$$a_{i} = \begin{cases} 0 & \text{if no } \text{in row } i \\ \neq [1 + number of cells -] in row i \\ b_{i} = \begin{cases} 0 & \text{if no } \text{o} \text{ in the } j^{\text{th}} \text{ column} \\ 1 + number f cells] in the j^{\text{th}} \text{ column} \\ \text{column} \end{cases}$$

the Catalan case Adela (T) = (P, Q)

Catalan Pair of paths alternative talleaux The "Adela duality" $\mathcal{P}(\mathsf{T}) \leftrightarrow \mathcal{Q}(\mathsf{T})$

the Catalan case

a b c d 1 1 2 0

Adela duality

2B88E 13120

TASEP with Catalan tableaux

relation with Shapiro-Zeilberger interpretation

TASEP (9,3) $\propto = \beta = 1$ Shapiro, Zeilberger (1982)

TASEP (9,3) $\propto = \beta = 1$ Shapiro, Zeilberger (1982)

$$\lambda = (\tau_{A}, ..., \tau_{n}) \longrightarrow \omega$$
state
$$P_{n}(A; a, p) = \frac{\lambda}{Z_{n}} \sum_{n} \frac{J(\omega, n)}{J(\omega, n)} \frac{g(\omega, n)}{g(\omega, n)}$$

$$f(\omega, n) = nb of contects " horizontal
$$g(\omega, n) = nb of oteps N$$$$

O. Mandelohtam (2015)

Proverse (a, p) = det A, s

 $A_{\lambda}^{\prime} = (A_{ij})$ $A_{ij} = \begin{cases} 0 & for \quad j \leq i-1 \\ 1 & for \quad j = i-1 \\ \beta^{j-i} \rightarrow \lambda^{i-1} \rightarrow \lambda^{i-1} \left(\begin{pmatrix} \lambda_{j+1} \end{pmatrix} + \begin{pmatrix} \lambda_{j+1} \end{pmatrix} \right) \\ \frac{\lambda_{j-1} \rightarrow \lambda^{i-1}}{2} \rightarrow d \left(\begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} + \begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} \right) \\ \frac{\lambda_{j-1} \rightarrow \lambda^{i-1}}{2} \rightarrow d \left(\begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} + \begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} \right) \\ \frac{\lambda_{j-1} \rightarrow \lambda^{i-1}}{2} \rightarrow d \left(\begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} + \begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} \right) \\ \frac{\lambda_{j-1} \rightarrow \lambda^{i-1}}{2} \rightarrow d \left(\begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} + \begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} \right) \\ \frac{\lambda_{j-1} \rightarrow \lambda^{i-1}}{2} \rightarrow d \left(\begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} + \begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} \right) \\ \frac{\lambda_{j-1} \rightarrow \lambda^{i-1}}{2} \rightarrow d \left(\begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} + \begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} \right) \\ \frac{\lambda_{j-1} \rightarrow \lambda^{i-1}}{2} \rightarrow d \left(\begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} + \begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} \right) \\ \frac{\lambda_{j-1} \rightarrow \lambda^{i-1}}{2} \rightarrow d \left(\begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} + \begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} \right) \\ \frac{\lambda_{j-1} \rightarrow \lambda^{i-1}}{2} \rightarrow d \left(\begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} + \begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} \right) \\ \frac{\lambda_{j-1} \rightarrow \lambda^{i-1}}{2} \rightarrow d \left(\begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} + \begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} \right) \\ \frac{\lambda_{j-1} \rightarrow \lambda^{i-1}}{2} \rightarrow d \left(\begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} + \begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} \right) \\ \frac{\lambda_{j-1} \rightarrow \lambda^{i-1}}{2} \rightarrow d \left(\begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} + \begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} \right) \\ \frac{\lambda_{j-1} \rightarrow \lambda^{i-1}}{2} \rightarrow d \left(\begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} + \begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} \right) \\ \frac{\lambda_{j-1} \rightarrow \lambda^{i-1}}{2} \rightarrow d \left(\begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} + \begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} \right) \\ \frac{\lambda_{j-1} \rightarrow \lambda^{i-1}}{2} \rightarrow d \left(\begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} + \begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} \right) \\ \frac{\lambda_{j-1} \rightarrow \lambda^{i-1}}{2} \rightarrow d \left(\begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} + \begin{pmatrix} \lambda_{j-1} - 1 \end{pmatrix} \right) \end{pmatrix}$

bijection with dual configuration of paths giving a bijective proof of Narayana determinant

